Операторные уравнения (86132)

Посмотреть архив целиком

Федеральное агентство по образованию

Государственное муниципальное образовательное учреждение

высшего профессионального образования

Вятский Государственный Гуманитарный университет

(ВятГГУ)


Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

«Операторные уравнения»


Выполнила:

студентка V курса

математического факультета

Кощеева Анна Сергеевна

Научный руководитель:

старший преподаватель кафедры математического анализа и МПМ

Гукасов Артур Константинович

_______________________

Рецензент:

Кандидат физико-математических наук, доцент кафедры математического анализа и МПМ

Подгорная Ирина Иссаковна

________________________

Допущен к защите в ГАК

Зав.кафедрой______________________ Крутихина М.В.

« »____________

Декан факультета__________________ Варанкина В.И.

« »____________

Киров 2005

Содержание

Введение_______________________________________________________

3

Глава 1.Операторные уравнения.___________________________________

4


§1. Определение линейного оператора________________________

4


§2. Норма линейного оператора______________________________

5


§3. Обратные операторы____________________________________

5


§4. Абстрактные функции___________________________________

9


§5. Аналитические абстрактные функции и ряды Тейлора________

11


§6. Метод малого параметра в простейшем случае______________

12


§7. Метод малого параметра в общем случае___________________

13


§8. Метод продолжения по параметру________________________

15


8.1. Формулировка основной теоремы___________________

15


8.2. Простейший случай продолжения по параметру_______

16

Глава 2. Приложение_____________________________________________

19

Литература_____________________________________________________

27




Введение

Функциональный анализ – мощное средство для решения математический задач, возникающих в реальных ситуациях, он имеет множество приложений в различных областях математики, его методы проникают в смежные технические дисциплины.

Многие задачи математической физики, теории упругости, гидродинамики сводятся к отысканию решения дифференциального линейного уравнения, что, в свою очередь, приводит к задаче отыскания решения уравнения Аx = y с линейным оператором А. В данной работе рассмотрены два метода решения операторных уравнений.

Цель данной работы: рассмотреть основы теории линейных операторов и методы решения операторных уравнений – метод малого параметра и метод продолжения по параметру, показать применение этих методов к решению задач.

Изучив имеющийся материал по данной теме, я поставила перед собой следующие задачи:

  1. раскрыть некоторые основы теории линейных операторов, необходимые для освоения методов решения операторных уравнений;

  2. проиллюстрировать на конкретных примерах способы решения операторных уравнений и дать пояснения по ходу решения конкретных задач.

Так как выделение из функционального анализа его прикладной части, содержащей конструктивные методы получения решений задач, преследует методическую цель – сделать эти методы доступнее тем, кто занимается приложениями математики. Поэтому данная работа разделена на две главы, в первой содержатся необходимые теоретические обоснования способов решения операторных уравнений и суть обоих методов, а во второй – решения конкретных задач.


Глава 1. Операторные уравнения

§1.Определение линейного оператора

Пусть X и Y – линейные пространства, оба вещественные или оба комплексные.

Оператор А: X → Y с областью определения D(А) называется линейным, если

А(λ1x1 + λ2x2) = λ1А(x1) + λ2А(x2)

для любых x1,x2  D и любых скаляров λ1 и λ2.

Пусть X и Y – нормированные пространства и А: X → Y, где А – линейный оператор, всюду заданный в X (т.е. D(А) = X).

Оператор А называется непрерывным в точке x0  X, если Аx → Аx0 при x → x0. Но судить о непрерывности линейного оператора в различных точках x0  X можно по непрерывности его в нуле пространства X.

Теорема 1. Пусть линейный оператор А всюду задан в банаховом пространстве X и со значениями в банаховом пространстве Y непрерывен в точке 0  X; тогда А непрерывен в любой точке x0  X.

Доказательство. Рассмотрим равенство Аx – Аx0 = А (x – x0). Если x → x0, то z = x – x0 → 0. По непрерывности в нуле Аz → 0, но тогда Аx – Аx0 → 0, что и требовалось доказать.

Линейный оператор А называется непрерывным, если он непрерывен в точке x = 0.

Пусть S1(0) – замкнутый шар ||x|| ≤ 1 в банаховом пространстве X.

Будем называть линейный оператор А: X → Y ограниченным, если он ограничен на единичным шаре S1(0), т.е. если ограничено множество

{ ||Аx||, ||x|| ≤ 1}.

Согласно определению, если А ограничен, то существует постоянная с > 0 такая, что для любых x с ||x|| ≤ 1 справедливо неравенство

||Аx|| ≤ с (1)

Теорема 2. А ограничен тогда и только тогда, когда справедлива оценка

||Аx|| ≤ с ||x|| (2)

для любых x  X, где с – постоянная.

Теорема 3. Пусть А: X → Y, А – линейный оператор, X, Y – банаховы пространства. Для того чтобы А был непрерывным, необходимо и достаточно, чтобы он был ограниченным.

§2. Норма линейного оператора

В линейном пространстве непрерывных линейных операторов зададим норму следующим образом:

. (1)

Поясним, почему существует конечное число ||А||, определяемое для любого ограниченного оператора равенством (1). Так как А – ограничен, то множество

ограничено сверху. По теореме о верхней грани существует .

Из свойства sup M следует, что ||Аx|| ≤ ||А|| для всех x  S1(0). Отсюда

||Аx|| ≤ ||А|| ||x||, (2)

справедливое для всех x  X, включая x = 0. таким образом, ||А|| является наименьшей из констант в неравенстве ||Аx|| ≤ ||А||, и, значит, оценка (2) является наилучшей.

Пространство нормированных непрерывных линейных операторов, действующих из X в Y, будем обозначать L(X, Y).

§3.Обратные операторы

Системы линейных алгебраических уравнений, интегральные уравнения, а также различные задачи для обыкновенных дифференциальных уравнений и уравнений с производными часто могут быть записаны в виде линейного уравнения

Если существует обратный оператор , то решение задачи записывается в явном виде:

Важное значение приобретает теперь выявление условий, при выполнении которых обратный оператор существует и обладает теми или иными свойствами.

Пусть задан линейный оператор: А: X → Y, где X,Y – линейные пространства, причем его область определения D(A)X, а область значений R(A)Y.

Введем множество - множество нулей оператора А. заметим, что N(A) не пусто, так как 0  N(A)

Теорема 4. Оператор А переводит D (А) в R (А) взаимно однозначно тогда и только тогда, когда N(A)=, (т.е. множество А нулей состоит только из элемента 0)

Теорема 5. Оператор А-1 существует и ограничен на R(A) тогда и только тогда, когда для некоторой постоянной m>0 и любого x  D(A) выполняется неравенство

. (1)

Введем теперь следующее важное понятие.

Будем говорить, что линейный оператор А: X → Y непрерывно обратим, если R(A)=Y , оператор обратим и A-1  L(Y, X), (т.е. ограничен).

Обращаясь к теореме 5, мы сможем сформулировать следующее утверждение.

Теорема 6. Оператор А непрерывно обратим тогда и только тогда, когда R(A)=Y и для некоторой постоянной m>0 и для всех выполняется неравенство (1).

В случае определенного и ограниченного на всем множестве оператора A  L(X,Y) имеется теорема Банаха об обратном операторе.

Теорема 7. Если А – ограниченный линейный оператор, отображающий взаимно однозначно банахово пространство X на банахово пространство Y, то обратный оператор А-1 ограничен.

Иными словами, если А  L(X,Y), где X и Y банаховы, R(A)=Y и А обратим, то А непрерывно обратим.

Взглянем на понятие непрерывно обратимого оператора с точки зрения разрешимости линейного уравнения

Ax = y (2)

Если А непрерывно обратим, то уравнение это имеет единственное решение x = A-1y для любой правой части у. Если при этом (решение того же уравнения с правой частью ), то . Это означает, что малое изменение правой части y влечет малое изменение решения, или, как принято говорить, задача (2) корректно разрешима.


Случайные файлы

Файл
101052.rtf
131679.rtf
154192.rtf
37063.rtf
43383.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.