Билеты + решённые билеты по ангему (Билет10)

Посмотреть архив целиком

Билет№10

Виды уравнения прямой

Уравнение вида ax+by+c=0, a^2+b^2!=0 – называют общим уравнением прямой.

Параметрическое и каноническое уравнения прямой.

1)определим прямую L на плоскости точкой М0(x0;y0) на этой прямой и ненулевым вектором s={l;m}, параллельным ей. Такой вектор s называют направляющим вектором прямой L.

Если точка М(x;y) принадлежит прямой L, то это эквивалентно тому, что вектор М0М коллинеарен вектору s, т.е. эти векторы принадлежат одному и тому же пространству V1. Так как вектор s ненулевой, он обр базис в этом пространстве V1. Следовательно для некоторого числа t выполяняется равенство М0М=ts. Воспользовавшись тем, что М0М={x-x0;y-y0}, s={l;m}, запишем это равенство в координатах:


Параметрическое уравнение прямой.





2) Модифицируя вывод параметрических уравнений прямой. Коллинеарность векторов М0М и s, согласно следствию из теоремы о сложении и умножении векторов, эквивалентна равенству отношений их одноименных координат:

Вывод уравнения прямой с угловым коэффициентом:

определим прямую L на плоскости точкой М0(x0;y0) на этой прямой и угол φ, на которой надо повернуть против хода часовой стрелки ось асбцисс Ох до совмещения с прямой. Предположим что φ!=900

Точка М(х;у) принадлежит прямой L тогда и только тогда, когда вектор М0М составялет с осью абсцисс угол φ или (п- φ), при этом отношение координат этого вектора можно записать в виде

Находя y приходим к уравнению y=kx+b, где k=tg φ; b=y0-x0tg φ

Уравнение прямой проходящей через 2 точки:

Зададим прямую L на плоскости двумя различными точками М1(x1;y1) и M2(x2;y2) на ней.

Тогда вектор М1М2 параллелен L и ее каноническое уравнение (x-x0)/m=(y-y0)/n как уравнение прямой, проходящей через точку М1(x1;y1), с направляющим вектором s= М1М2 имеет вид

Уравнение прямой в отрезках:

Определим прямую L ее точками А(а,0) и В(0,b) пересечения с осями координат, предполагая что эти две точки не совпадают с началом координат, т.е. что а!=0 и b!=0

Записывая уравнение прямой L в виде

по двум ее точкам А и В

Получаем откуда

Условие параллельности и перпендикулярности прямых.

Возьмем две прямые

Две пересекающиеся прямые образуют два смежных угла, один из которых совпадает с углом образованным нормальными векторами.А угол между 2мя вект можно вычислить при помощи скалярного произведения.


Умножение матриц







Св-ва умножения матриц


Случайные файлы

Файл
2451-1.rtf
152592.doc
96493.rtf
164698.doc
18173-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.