Проектирование привода горизонтального канала наведения и стабилизации ОЭС (62832)

Посмотреть архив целиком

Министерство общего и профессионального

образования РФ


Тульский государственный университет


Кафедра автоматики и телемеханики




Проектирование привода горизонтального канала

наведения и стабилизации ОЭС

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ДИПЛОМНОМУ ПРОЕКТУ











Тула 1998г.


Содержание


Введение 6

1. Обоснование актуальности темы и постановка задачи 8

2. Обзор литературы по следящим приводам 10

3. Разработка алгоритма проектирования следящего привода 13

4. Определение зависимости скорости и ускорения наведения АОП от дальности 15

5. Расчет потребной мощности ЭДВ 18

6. Определение типа и параметров ЭДВ 19

Наименование характеристик 20

7. Расчет зон работы следящего привода 22

8. Определение параметров математической модели двигателя 24

9. Формирование скоростного контура привода ГН 29

10. Определение параметров корректирующих устройств скоростного привода 34

11. Формирование контура наведения и стабилизации с определением параметров корректирующих устройств 38

12. Определение точностных характеристик 47

13. Разработка конструкции и технология изготовления БУ следящего привода 50

13.1. Конструкция платы БУ привода 50

13.2. Технологическая часть 54

13.3. Расчет показателей надежности БУ следящего привода 56

14. Охрана труда и окружающей среды 59

14.1. Охрана труда 59

14.1.1. Анализ вредных и опасных производственных факторов. 59

14.1.2. Требования к производственному помещению. 60

14.1.3. Микроклиматические условия производственного помещения и вентиляция. 62

14.1.4. Требования к освещению производственного помещения. 66

14.1.5. Техника безопасности. 68

14.2. Охрана окружающей среды 71

15. Организационно-экономический раздел 77

15.1. Составление и расчет сетевого графика. 77

15.2. Расчет затрат на проектирование и изготовление следящего электропривода 85

Заключение 93

Библиографический список 94

Приложения 96

Реферат


Данный дипломный проект посвящен проектированию привода горизонтального канала наведения и стабилизации(ГКНиС) ОЭС и включает в себя расчет параметров двигателя привода, разработку скоростного и позиционного контура следящей системы, составление функциональной схемы и структурной схемы линейной математической модели следящего привода. Синтез системы производится исходя из требований по времени переброса и точности слежения за подвижным объектом в условиях воздействия качек на носитель следящей системы.

Конструкторско-технологический раздел включают в себя разработку конструкции печатной платы БУ привода, составление технологического процесса ее изготовления, производится расчет теплового режима работы платы и надежность эксплуатации устройства.

Большое внимание уделено охране труда и окружающей среды. Производится расчет параметров производства печатных плат БУ привода ГКНиС: количества людей, занятых непосредственно изготовлением изделий, размеров цеха, расстановка оборудования, вентиляции, освещения. Определяется категория пожаробезопасности производства, схема эвакуации людей при пожаре и расположение противопожарного оборудования

Экономической часть включает в себя составление сетевого плана проектирования и изготовления опытного образца привода ГКНиС ОЭС, расчет критического пути и себестоимости ОКР и стоимости опытного образца привода ГКНиС.

Введение


Автоматическое управление различными объектами приводит к необходимости разработки создания сложных систем, включающих в себя вычислительные машины, автоматические регуляторы, исполнительные устройства т.п.

В системах управления широкое применение получили устройства с механическим выходом, т.е. автоматизированные приводы, в которых в подавляющем большинстве случаев перемещение выходного звена пропорционально (или равно) входной управляющей координате. Автоматизированные приводы с указанными свойствами относятся к классу следящих систем.

Выходной вал следящего привода с определённой степенью точности воспроизводит в виде механического перемещения входной управляющий сигнал. При этом исполнительный двигатель должен преодолевать имеющиеся на выходном валу нагрузки (возмущающие воздействия) и развивать скорости и ускорения, обеспечивающие его слежение за входным управляющим воздействием, а система управления двигателем должна обеспечивать необходимую точность слежения, которые, как правило, должны обладать высокой динамической точностью.

Требуемые динамические свойства привода и типичные законы изменения управляющих и возмущающих воздействий зависят от назначения системы управления в целом и функций, выполняемых в ней приводом. По этим признакам следящие системы могут быть разбиты на следующие группы: приводы систем автоматического сопровождения, приводы пусковых устройств, приводы устройств гиростабилизированных платформ, приборные приводы и т.д.

Данная работа посвящена проектированию привода системы, относящейся к классу систем автоматического сопровождения (САС). К этой группе относятся приводы широкого класса систем, предназначенных для слежения за объектами, перемещающимися в пространстве (приводы систем радиолокационных камер, оптических визиров, координаторов, астроориентиров). Требования к динамике определяются законом движения объекта и условиями наилучшей фильтрации случайной составляющей входного сигнала. Необходимо учитывать и значительные возмущения в виде ветрового момента. Приводы, установленные на подвижном основании, должны обеспечивать высокую точность отработки угловых колебаний основания.

Основные задачи проектирования состоят в выявлении требуемых динамических свойств привода, в выборе исполнительного двигателя, обладающего нужными предельными динамическими возможностями, определении метода разработки системы управления, которая при максимальной простоте и надёжности и минимальных габаритах и весе обеспечивает необходимую динамику и точность.

При проведении расчетов были использована пакеты прикладных программ МаthCAD 6.0 plus, МаthCAD 7.0 и MathLab 5.0.

1. Обоснование актуальности темы и постановка задачи


Автоматизация процессов управления различными объектами сопровождается широким использованием следящих приводов. Следящие приводы нашли применение во многих областях техники. Они используются в системах управления металлорежущими станками, металлургическими прокатными станами, шагающими экскаваторами, в системах управления манипуляторами, в моделирующих стендах, в системах управления объектами вооружения и т.д. Уже из этого краткого перечня видно, сколь значительно число задач, решение которых может быть возложено на следящие приводы.

Применение современных следящих приводов практически во всех областях хозяйства и промышленности, обусловлено необходимостью повышения качества выпускаемой продукции.

Применение современных следящих приводов в военной технике является необходимым фактором, который способствует повышению тактико-технических характеристик систем слежения и ведения огня. Точность, скорость, качество и надежность работы современного вооружения при обеспечении боевой готовности армии и в боевых условиях играет важную роль в поддержании обороноспособности страны.

Задачей данного дипломного проекта является проектирование и расчет следящего привода горизонтального канала наведения и стабилизации ОЭС, предназначенного для сопровождения объекта слежения.

Чтобы обеспечить высокие статические и динамические характеристики следящего привода необходимо правильно спроектировать и рассчитать его, чему и будет посвящена данная работа.

Исходные данные для расчета:

1) Объект слежения:

Диаметр корпуса d=0,5 м;

Длина корпуса l=4,5 м;

Скорость движения Vo=600 м/c;

Коэффициент излучения объекта =0,8;

Характеристики движения объекта:

Параметр движения Р=500 м;

Высота движения Н=300 м;

Дальность сопровождения не менее Dc=6 км;

2) Атмосфера:

Метеовидимость Мдв=20 км;

Относительная влажность =90%;

Температура окр. cреды t=150 C;

3) Привод:

Момент инерции вращающейся части АОП JГН = 8 кгм2 ;

Масса нагрузки mН = 170 кг ;

Максимальный возмущающий момент МВ = 50 Нм :

статический момент сопротивления повороту МСТ = 30 Нм,

аэродинамический момент МАЭР = 15 Нм,

статический момент неуравноешивания МНЕУР = 5 Нм ;

Нижняя частота собственных колебаний fK = 100 Гц ;

Углы наведения от -900 до +900 ;

Наведение : скоростьMAX = 100 0/c, ускорение =220 02, скоростьMIN = 0,02 0/c.

2. Обзор литературы по следящим приводам

В настоящее время, в связи с широким применением и развитием следящих систем, имеется множество публикаций и изданий по СС. В ходе выполнения дипломного проекта был произведен поиск и обзор литературы по следящим приводам и сопутствующей тематике (ТАУ и т.п.), в результате чего получены следующие сведения.

В книге «Проектирование следящих систем» под редакцией д.т.н., профессора Л.В. Рабиновича 1969 года выпуска [1] изложены теоретические основы и методика расчета и проектирования следящих приводов. Рассмотрены метод выбора исполнительного двигателя по предельным динамическим возможностям и энергетике, синтез следящих систем, близких к линейным, обеспечивающих заданную динамическую точность. Освещены методы повышения динамической точности, основанные на комбинированном управлении и теории инвариантности, и методы учета и анализа влияния нелинейностей с использованием логарифмических характеристик. Приведены методы расчета и проектирования релейных систем, в том числе оптимальных по быстродействию, рас­смотрены особенности проектирования механических пере­дач.


Случайные файлы

Файл
162656.rtf
106983.rtf
177546.rtf
163730.rtf
Olimp.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.