Диплом-Нейросетевая система для управления и диагностики штанговой глубинонасосной установкой (147944)

Посмотреть архив целиком

Содержание


Техническое задание

Введение

1.Обзорная часть

1.1 Основные положения нейронных сетей

1.2 Обзор существующих систем управления ШГНУ

1.3 Обзор методов анализа работы ШГНУ

1.4 Обзор и сравнительные характеристики нейрочипов

2. Разработка и описание структурной схемы

3. Выбор и расчет блоков принципиальной схемы

3.1 Генератор тактовых импульсов

3.2 Цифро-аналоговый преобразователь

3.3 Усилитель напряжений

3.4 Фильтр нижних частот

3.5 Нейрочип

3.6 Оперативное запоминающие устройство

3.7 Постоянное запоминающие устройство

3.8 Универсальный последовательный интерфейс

3.9 Приемопередатчик

3.10 Расчет надежности

3.11 Расчет потребляемой мощности

4. Метрологическая часть

5. Технологическая часть

6. Организационно-экономическая часть

7. Безопасность и экологичность проекта

Заключение

Список литературы

Приложения

Ведомость документации

Перечень элементов

Патентная проработка


Техническое задание


Спроектировать систему для диагностики и управления штанговой глубиннонасосной установки со следующими техническими параметрами:

- надежность 0.95 за 10000ч;

- габариты 310х187х76 мм;

- потребляемая мощность, не более 3 Вт;

- температурный диапазон -50 …+ 50 ºС;

- погрешность, не более 1%.


Введение


Нефть и газ являются одними из основных видов топлива,потребляемого человечеством.Нефть добывают и используют сравнительно давно, однако начало интенсивной промышленной разработки нефтяных месторождений приходится на конец ХIХ-начало ХХ веков.

Конец ХХ столетия характеризуется резким увеличением спроса на нефть и газ и их потребления. В настоящее время около 70 % энергитической потребности в мире покрывается за счет нефти и газа.

В последнее время добыча нефти с помощью фонтанирующих скважин фактически прекратилась. Многие скважины, пробуренные на нефтеносные пласты, сразу после окончания бурения вводятся в эксплуатацию насосным способом. Непрерывно растет фонд малодебитных скважин (до 3т/сутки)

Мощность насосного оборудования на них в 4-5 раз превышает необходимую. В настоящее время в стоимости нефти эксплуатационные расходы на электроэнергию и обслуживание энергетического комплекса доходят до 45-50%. Процесс добычи нефти после геологических работ и бурения скважин начинается с выбора оборудования. Средний срок эксплуатации нефтяных скважин около 20 лет. За это время оборудование меняется несколько раз. Это объясняется не столько его физическим износом, сколько изменением дебита нефти. Когда дебит скважины становится менее 100 т/сут, устанавливается штанговая глубинно-насосная установка (ШГНУ) - станок-качалка. Есть скважины, на которых сразу после бурения устанавливаются станки-качалки. 75% скважин в России оборудованы ими. Если производительность насоса станка-качалки превышает нефтеотдачу скважины, то в настоящее время или меняют станок-качалку, или переводят ее в периодический режим работы. Причем кажущаяся экономия электроэнергии и моточасов работы оборудования при периодической эксплуатации скважин на самом деле приводит к увеличению удельного расхода электроэнергии на тонну добытой нефти и к усложнению условий эксплуатации оборудования.

Поэтому требования правильного выбора электрооборудования для нефтедобычи, автоматизация его работы, снижение затрат на эксплуатацию и ремонт оборудования являются весьма актуальными.

Интенсификация технологических процессов добычи, переработки и хранения нефти и нефтепродуктов вызывает необходимость дальнейшего совершенствования систем автоматизации нефтяных отраслей промышленности, что, в свою очередь, связано с обработкой большого объема измерительной информации. Этим объясняется широкое развитие измерительных информационных систем, предназначенных для сбора, преобразования, передачи, хранения, обработки на ЭВМ и представления в удобном для оператора виде различного рода технологической информации.


1.Обзорная часть


1.1 Основные положения нейронных сетей


Нейронная сеть является совокупностью элементов, соединенных некоторым образом так, чтобы между ними обеспечивалось взаимодействие. Эти элементы, называемые также нейронами или узлами, представляют собой простые процессоры, вычислительные возможности которых обычно ограничиваются некоторым правилом комбинирования входных сигналов и правилом активизации, позволяющим вычислить выходной сигнал по совокупности входных сигналов. Выходной сигнал элемента может посылаться другим элементам по взвешенным связям, с каждой из которых связан весовой коэффициент или вес. В зависимости от значения весового коэффициента передаваемый сигнал или усиливается, или подавляется. Элемент нейронной сети схематически показан на рисунке 1.1.-1


Рисунок 1.1.-1 Элемент нейронной сети.


Структура связей отражает детали конструкции сети, а именно то, какие элементы соединены, в каком направлении работают соединения и каков уровень значимости (т.е. вес) каждого из соединений. Задача, которую понимает сеть (или ее программа), описывается в терминах весовых значений связей, связывающих элементы. Структура связей обычно определяется в два этапа: сначала разработчик системы указывает, какие элементы должны быть связаны и в каком направлении, а затем в процессе фазы обучения определяются значения соответствующих весовых коэффициентов.

Весовые коэффициенты можно определить и без проведения обучения, но как раз самое большое преимущество нейронных сетей заключается в их способности обучаться выполнению задачи на основе тех данных, которые сеть будет получать в процессе реальной работы. Для многих приложений обучение является не только средством программирования сети, когда нет достаточных знаний о способе решения задачи, позволяющих выполнить программирование в традиционной форме, но часто единственной целью обучения является проверка того, что сеть действительно сможет научиться решать поставленные перед ней задачи.

С каждым процессором (т.е. обрабатывающим элементом сети) связывается набор входящих связей, по которым к данному элементу поступают сигналы от других элементов сети, и набор исходящих связей, по которым сигналы данного элемента передаются другим элементам. Некоторые элементы предназначены для получения сигналов из внешней среды (и поэтому называются входными элементами), а некоторые — для вывода во внешнюю среду результатов вычислений (и поэтому такие элементы сети называются выходными элементами). Любая вычислительная машина имеет хотя бы одно устройство ввода (например, клавиатуру), с помощью которого система получает данные из внешней среды, и устройство вывода (например, монитор), с помощью которого отображаются результаты вычислений. В случае программного моделирования реальных процессов на входные элементы обычно подаются уже предварительно подготовленные данные из некоторого файла данных, а не от непосредственно связанных с внешней средой датчиков.

Структура связей.

Структура связей отражает то, как соединены элементы сети. В одной модели (т.е. для одного типа сетей) каждый элемент может быть связан со всеми другими элементами сети, в другой модели элементы могут быть организованы в некоторой упорядоченной по уровням (слоям) иерархии, где связи допускаются только между элементами в смежных слоях, а в третьей могут допускаться обратные связи между смежными слоями или внутри одного слоя, или же допускаться посылка сигналов элементами самим себе. Возможности здесь практически бесконечны, но обычно для каждой конкретной модели сети указывается тип допустимых связей. Каждая связь определяется тремя параметрами: элементом, от которого исходит данная связь, элементом, к которому данная связь направлена, и числом (обычно действительным), указывающим весовой коэффициент (т.е. вес связи). Отрицательное значение веса соответствует подавлению активности соответствующего элемента, а положительное значение — усилению его активности. Абсолютное значение весового коэффициента характеризует силу связи.

Строение нейрона.

Одним из основных достоинств нейровычислителя является то, что его основу составляют относительно простые, чаще всего, однотипные элементы, имитирующие работу нейронов мозга. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов — однонаправленных входных связей, соединённых с выходами других нейронов, а также имеет аксон — выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Общий вид нейрона приведён на рисунке 1.1.-2.




Рисунок 1.1.-2 - Общий вид нейрона.


Каждый синапс характеризуется величиной синаптической связи или её весом wi, который по физическому смыслу эквивалентен электрической проводимости. Текущее состояние нейрона определяется как взвешенная сумма его входов:





Выход нейрона есть функция его состояния: y = f(s) (2), которая называется активационной. Известны различные виды таких функций, некоторые из которых представлены на рис. 2. Одной из наиболее распространённых является нелинейная функция с насыщением, так называемая сигмоидальная (логистическая) функция:





При уменьшении a сигмоид становится более пологим, вырождаясь в пределе при a = 0 в горизонтальную линию на уровне 0,5; при увеличении a сигмоид приближается по внешнему виду к функции единичного скачка с порогом T в точке x = 0. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне [0,1]. Одно из ценных свойств сигмоидной функции — простое выражение для её производной:





Параллелизм обработки достигается путём объединения большого числа нейронов в слои и соединения определённым образом различных нейронов между собой. В качестве примера простейшей НС приведём трёхнейронный персептрон (рисунок 1.1.-3), нейроны которого имеют активационную функцию в виде единичной пороговой. На n входов поступают некие сигналы, проходящие по синапсам на 3 нейрона, образующие единственный слой этой НС и выдающие три выходных сигнала:







Рисунок 1.1.-3 - Однослойный персепрон


Очевидно, что все весовые коэффициенты синапсов одного слоя нейронов можно свести в матрицу W, в которой каждый элемент wij задаёт величину i-ой синаптической связи j-ого нейрона. Таким образом, процесс, происходящий в НС, может быть записан в матричной форме: Y = F(XW), где X и Y — соответственно, входной и выходной сигнальные векторы, F(V) — активационная функция, применяемая поэлементно к компонентам вектора V. Теоретически число слоёв и нейронов в каждом слое может быть произвольным. Рассматривая классификацию НС, можно выделить: бинарные (цифровые) и аналоговые НС, предварительно обученные (неадаптивные) и самообучающиеся (адаптивные) нейронные сети, что крайне важно при их аппаратной реализации. Бинарные оперируют двоичными сигналами, и выход каждого нейрона может принимать только два значения: 0 либо 1.По топологической классификации НС во внимание принимается число слоёв и связей между ними. На рисунке 1.1.-4 представлен двухслойный персептрон , полученный из однослойного путём добавления второго слоя, состоящего из двух нейронов. При этом нелинейность активационной функции имеет конкретный смысл: если бы она не обладала данным свойством или не входила в алгоритм работы каждого нейрона, результат функционирования любой p-слойной НС с весовыми матрицами W (i), i = 1,2,...p для каждого слоя i сводился бы к перемножению входного вектора сигналов X на матрицу W (S) = W (1)*W (2)*...*W (p), то есть фактически такая p-слойная НС эквивалентна однослойной с весовой матрицей единственного слоя W (S): Y = XW (S).




Рисунок 1.1.-4 - Двухслойный персептрон


Одним из самых важных этапов разработки нейровычислителя является обучение нейронной сети. От качества обучения зависит способность сети решать поставленные перед ней задачи. На этапе обучения кроме параметра качества подбора весовых коэффициентов, важную роль играет время обучения. Как правило, эти два параметра связаны обратной зависимостью, и их приходится выбирать на основе компромисса. Обучение НС может вестись с учителем или без него. В первом случае, сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае, выходы НС формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы.

Существует великое множество различных алгоритмов обучения, которые можно разделить на два больших класса: детерминированные и стохастические. В первом из них подстройка весов представляет собой жёсткую последовательность действий, во втором — производится на основе действий, подчиняющихся некоторому случайному процессу. Практически 80% реализованных на сегодня нейрочипов, ориентированных на задачи цифровой обработки сигналов, используют при обучении НС алгоритм обратного распространения ошибки.

Обучение по алгоритму обратного распространения ошибок.

На протяжении многих лет не знали правила, которое можно было бы использовать для корректировки весов многослойной сети в процессе управляемого обучения. Правило корректировки весов, о котором идет речь, называется алгоритмом обратного распространения ошибок. Алгоритм обратного распространения определяет два потока в сети: прямой поток от входного слоя к выходному и обратный поток — от выходного слоя к входному. Прямой поток продвигает входные векторы через сеть, в результате чего в выходном слое получаются выходные значения сети. Обратный поток подобен прямому, но он продвигает назад по сети значения ошибок, в результате чего определяются величины, в соответствии с которыми следует корректировать весовые коэффициенты в процессе обучения. В обратном потоке значения проходят по взвешенным связям в направлении, обратном направлению прямого потока. Например, в прямом потоке элемент скрытого слоя посылает сигналы каждому элементу выходного слоя, а в обратном потоке элемент скрытого слоя будет получать сигналы ошибок от каждого элемента выходного слоя.

В процессе обучения каждый входной образец будет иметь соответствующий целевой выходной образец, который должен получаться для данного входного.

В общем, целью обучения является нахождение такого набора весовых коэффициентов сети, который обеспечивает решение данной конкретной проблемы. Перед началом обучения весовые коэффициенты устанавливаются равными малым случайным значениям — например, значениям из диапазона от -0.3 до 0.3. Коротко говоря, сети предъявляется образец и вычисляется вектор ошибок, в результате чего выясняется, насколько следует изменить значения весов; процесс повторяется для каждого образца. Полный цикл рассмотрения всех имеющихся образцов называется эпохой. Все образцы подаются на рассмотрение ее снова и снова, эпоха за эпохой, пока на протяжении одной эпохи все значения реального вывода для каждого образца не попадут в допустимые рамки.


1.2.Обзор существующих систем управления ШГНУ


В последние годы созданы вполне работоспособные приборы и целые комплексы, позволяющие регистрировать результаты динамометрирования в электронной памяти этих устройств с последующей (или одновременной) обработкой их на электронно-вычислительных машинах. Программно-математическое обеспечение (ПМО) каждого комплекса имеет свое оформление, требования к исходным данным и используемые методики их обработки.

Рассмотрим системы управления ШГНУ.

Комплексная система исследования работы скважин "Анализатор".

Данная система разработана американской компанией "Есhоmеtег". Она представляет собой комплекс измерительных датчиков. Управление их работой и обработка получаемой информации производятся компьютером совместно с аналого-цифровым преобразователем. Такая система осуществляет обработку данных акустических микрофонов, датчиков давления и нагрузки, акселерометров, датчиков тока двигателя, тахометров и других измерительных устройств.

Для измерения уровня жидкости в кольцевом пространстве скважины акустическим методом эта система используется совместно с генератором импульсов, микрофоном и датчиком давления. Эти измерения используются для определения забойного давления работающей эксплуатационной скважины. А знание пластового давления и использование модели притока жидкости, с учетом определенного анализа, позволяют определять эффективный дебит скважины.

На скважинах со штанговым глубинно-насосным оборудованием данная система применима для динамометрических исследований с измерением нагрузок на полированном штоке, ускорения движения полированного штока и потребляемого двигателем электрического тока. Измерение нагрузок на полированном штоке возможно двумя способами (в зависимости от решаемой задачи).

1. Для количественного динамометрического анализа необходимы данные высокой степени точности, которые можно получить с помощью подковообразного калиброванного датчика, измеряющего механическое напряжение. Он устанавливается между траверсами канатной подвески исследуемой скважины.

2. Для получения качественной информации, позволяющей судить об эффективности работы насоса и выявлять (диагностировать) некоторые неисправности подземного оборудования, используется С-образный облегченный датчик, прикрепляемый при помощи зажима непосредственно к полированному штоку. Датчик замеряет изменение нагрузки на штангах путем замера изменения диаметра полированного штока. Если коэффициент Пуассона для стали равен примерно 0,3, то радиальное напряжение составит около ЗОУ0 от осевой нагрузки.

В обоих случаях для определения перемещения полированного штока используется очень компактный акселерометр на интегральной схеме, который встроен в датчик измерения нагрузки. Таким образом, необходим только один кабель для соединения компьютера и датчика нагрузки. Скорость движения полированного штока является результатом интегрирова­ния сигнала ускорения акселерометра, а повторное интегрирование дает значение положения полированного штока как функции времени. Благодаря высокой скорости обработки информации компьютером, применяемым в комплексе систем "Анализатор", данные динамометрии появляются на экране сразу по мере измерения. В отдельном окне представляется график потребления электрического тока двигателем станка-качалки: анализ потребления электрического тока дает представление об уравновешенности станка-качалки.

Примеры графиков, получаемых при исследовании сква­жин с помощью комплексной системы "Анализатор", приведены на рисунке 1.2-1

1 — зависимость нагрузки на полированном штоке от положения балансира СКН (несколько циклов);

2 — зависимость нагрузки на полированном штоке от времени;

3 — зависимость нагрузки на полированном штоке от положения балансира СКН;

4 — зависимость тока электродвигателя привода СКН от времени;

5 — зависимость нагрузки на плунжере насоса от положения балансира СКН.


Рисунок 1.2-1 Примеры графиков, получаемых при исследовании скважин с помощью комплексной системы "Анализатор".


Комплекс СТК РНК-ЛЭП.

Система предназначена для телеуправления, телеизмерений и телесигнализации нефтяных скважин и других объектов добычи и первичной переработки нефти. Система в своем составе имеет:

- диспетчерский пункт (ДП);

- станции управления центральные (СУЦ) на распределительных подстанциях напряжением 110-35/6(10) кВ (РП);

- станции управления контролируемых пунктов (СУ КП).

На рисунке 1.2.-2 показано размещение элементов СТК РНК-ЛЭП на объектах нефтепромысла и их взаимодействие с объектами управления.


Рисунок 1.2.-1 Схема СТК РНК-ЛЭП


ДП - диспетчерский пункт, СУЦ - станция управления центральная, УПЦ, УПКП - устройства присоединения, КТП, Т-Р - комплектная трансформаторная подстанция, трансформатор, СУКП - станция управления контролируемого пункта, СУ СК - станция управления и защиты СКН при работе без РЭП СКН.

Конструктивно станции управления СТК РНК-ЛЭП представляют собой шкафы, в которых размещены кассеты с блоками. Диспетчерский пункт СТК РНК-ЛЭП оборудован ИЗМ-совместимым компьютером. Станции управления контролируемых пунктов устанавливаются на объектах телеуправления. СУ КП, имеющие проводные линии связи с диспетчерским пунктом НГДУ (СУ РП, КНС и др.), подключаются к ДП непосредственно, удаленные СУ КП подключаются к ЛЭП с помощью конденсаторного устройства присоединения и используют их в качестве физических линий связи с распределительной подстанцией 6(10) кВ (РП) и затем через СУЦ связываются с ДП. Принципиально возможно использование радиоканала для организации связи ДП-СУ КП.

Станции управления центральные на РП 35/6(10) кВ обеспечивают ретрансляцию команд и запросов диспетчерского пункта и ввод сигнала в ЛЭП через устройство присоединения к сборным шинам 6(10) кВ, а также прием и ретрансляцию данных от контролируемых пунктов, подключенных к ЛЭП. Связь ДП-СУЦ - проводная, по выделенной паре или с частотным уплотнением телефонной линии диспетчерской связи с подстанцией 35/6(10) кВ.

Технические возможности станций управления СТК РНК-ЛЭП позволяют осуществлять телесигнализацию и телеуправление (ТС и ТУ):

- станками-качалками (СКН);

- групповыми замерными установками (ГЗУ);

- кустовыми насосными станциями (КНС);

- распределительными подстанциями напряжением 110-35/6(10) кВ, РП),- другими объектами нефтедобычи и первичной переработки нефти. Примером функций ТС и ТУ могут служить следующие: включение, выключение и регулирование скорости качаний головки балансира станка-качалки, контроль потребляемой мощности, формирование ваттметрограммы двигателя, динамограммы станка-качалки, контроль количества откачиваемой жидкости, превышения давления в выкидном трубопроводе, несанкционированного доступа в СУ.

Станции управления КП позволяют оперативному персоналу связаться по телефонному каналу с диспетчером НГДУ. Программные средства СТК РНК-ЛЭП позволяют вести архивы накопленных (контролируемых параметров, ваттметрграмм, динамограмм и др.), составлять отчеты.

Устройство для диагностирования состояния скважинного глубиннонасосного оборудования (патент).

Устройство используется в области нефтедобычи. Предназначено для автоматического сбора, анализа и хранения информации о работе скважин, оборудованных штанговыми глубиннонасосными установками (ШГНУ), а также электроцентробежными насосами (ЭЦН).

Схема устройства для диагностирования состояния скважинного глубиннонасосного оборудования представлена на рисунке 1.2-3


Рисунок 1.2.-3 Схема устройства для диагностирования состояния скважинного глубиннонасосного оборудования.


Для проведения диагностирования технического состояния штанговой глубиннонасосной установки все датчики устанавливают в соответствующем месте на дневной поверхности скважины, выходы датчиков подключают к входу вторичного прибора, на соответствующие тракты измерения блока регистрации 2.

Режим работы устройства выбирают с помощью клавиатуры 18. Запись информации о техническом состоянии ШГНУ производят в течение одного или кратного количества циклов работы установки. Рабочий цикл определяют по интервалу времени между двумя "мертвыми" точками положения балансира ШГНУ.

При снятии динамограммы, характеризующей работу насоса, в блоке регистрации 2 в оперативно-запоминающем устройстве 20 задается область, в которую будет заноситься информация о работе насоса, а также заносятся данные: N куста, N скважины, длина хода и период хода полированного штока. Затем запускают отсчет времени в блоке временной задержки 13, после чего запускают станок-качалку на несколько периодов, полированный шток при этом совершает возвратно-поступательное движение, как следствие - датчики усилия 3 и хода 4 полированного штока начинают формировать сигналы. По истечении времени задержки, после того, как ШГНУ вошла в установившийся режим работы, автоматически или с дистанционного пульта оператора запускается режим измерения, и сигнал с датчика усилий 3 поступает на усилитель 8 и далее через мультиплексор 11, который осуществляет коммутацию имеющихся аналоговых сигналов, - на вход аналого-цифрового преобразователя 12, а с него - на порт микропроцессорного контроллера 17. В это же время сигнал с датчика положения 4 также поступает на вход микропроцессорного контроллера 17 и на вход блока запуска измерений 14. При этом датчик положения 4 установлен на полированном штоке станка-качалки таким образом, чтобы синхронизирующий сигнал запуска измерения микропроцессорного контроллера 17 вырабатывался в блоке запуска измерений 14 только тогда, когда канатная подвеска находится в крайнем нижнем положении. По этому сигналу контроллер 17 начинает измерять время одного качания и усилие между траверсами подвески штанг. Обработка постоянно поступающей в цикле измерения информации о времени и усилии осуществляется в контроллере 17 в соответствии с заданной программой, поступающей из программного блока управления 19. После прихода с датчика положения второго синхронизирующего сигнала по цепи датчик положения 4 - блок запуска измерений 14 - контроллер 17 - генератор 16 синусоидальных колебаний информация автоматически выводится на графический индикатор 22, заносятся в память оперативно-запоминающего устройства 20 все необходимые уровни нагрузок и единичная динамограмма. При этом развертка динамограммы по оси X осуществляется по сигналу с генератора синусоидальных колебаний 16, период колебаний которого соответствует периоду одного качания. На экране графического индикатора 22 отображается одиночная динамограмма (фиг. 2), по которой определяют вес штанг Pшт, вес штанг плюс жидкости Pш+ж, минимальный (Pmin) и максимальный (Pmax) вес штанг, а также длину хода. Значения нагрузок в цифровом виде заносятся в протокол промысловых испытаний с фактическими нагрузками за период одного цикла. По полученной одиночной динамограмме в соответствии с программой, заданной программным блоком управления 19, автоматически прямо на скважине рассчитываются величина среднего дебита, утечки в клапанах насоса, производительность насоса.

Системы контроля за состоянием глубинно-насосного оборудования " СИДДОС".

Программно-аппаратный комплекс "СИДДОС", разработанный Томским НПО "СИАМ", предназначен для контроля и измерения рабочих характеристик штанговых глубинных насосов: силовых нагрузок в различных положениях полированного штока, длины хода, числа качаний, наличия утечек в глубинном оборудовании, динамограммы работы насоса. Данные измерений записываются в энергонезависимую память электронного блока и далее могут быть:

выведены на термопечатающее устройство в виде динамограммы и цифрового отчета;

переданы в компьютерную базу данных по проведенным исследованиям.

Телединамометрическая система контроля, разработанная Московским нефтяным институтом, представляет собой датчики усилия и перемещения, стационарно устанавливаемые на балансире СКН. Система фиксирует деформацию балансира в процессе работы СКН, пропорциональную возникающим в глубинном оборудовании нагрузкам. Информация о состоянии глубинного оборудования регистрируется в процессе обхода скважин путем подключения вторичного электронного прибора к штепсельному разъему стационарного датчика с последующей передачей в компьютер и созданием необходимой базы данных. При наличии кабельной или радиосвязи система предусматривает возможность дистанционного контроля за состоянием глубинного оборудования централизованно, с пульта диспетчера.


1.3 Обзор методов анализа работы ШГНУ


Эффективность добычи нефти способом ШГНУ в основном зависит от правильного подбора оборудования, установления оптимальных режимов откачки жидкости и степени автоматизации скважины. Контроль откачки можно проводить несколькими методами, но наиболее распространены наиболее информативны два метода: динамометрирование и ваттметрографирование.

Ваттметрографический метод.

В основе метода лежит анализ ваттметрограмм, записанных в процессе контроля за работой глубиннонасосных скважин при помощи ваттметрографов. Ваттметрограмма представляет собой зависимость потребляемой мощности ШГНУ в зависимости от положения штанги. В отличие от динамометрирования, получение ваттметрограммы не связано с применением специальных датчиков, для этого достаточен только контроль тока и напряжения.

Предположение о возможности применения ваттметрограмм для контроля за работой станков-качалок были впервые высказаны еще в 1948г. профессором Куликовским Л.Ф., но не были разработаны методики расшифровки ваттметрограмм. В настоящее время, в связи с повышенными требованиями к качеству и надежности контроля за работой станков-качалок при минимальных затратах по обслуживанию, ваттметрографический метод заслуживает внимание и дальнейшего развития. С помощью этого метода можно определить:

- состояние работы насоса;

- степень неуравновешенности станка-качалки;

- наличие отрицательных усилий, ведущих к преждевременному выходу из строя редуктора;

- степень износа и состояние отдельных узлов станка-качалки;

- состояние ремней передачи;

- степень загруженности электродвигателя.

В настоящее время существует множество технических средств контроля и управления работой технологического объекта нефтедобычи, отличающихся оригинальными техническими и конструктивными решениями и выполненными на высоком техническом уровне, но все эти системы ваттмет-рографии имеют высокую стоимость и, как правило, являются самодостаточными, т.е. данные системы трудно состыковать с уже имеющимся парком станций управления и невозможно постепенное наращивание системы.

Для создания недорогой системы ваттметрографирования необходим блок снятия ваттметрограмм со следующими параметрами:

- малая стоимость;

- малые габариты (блок должен устанавливаться во все типы существующих станций управления);

- простота установки;

- возможность подключения к существующим системам контроля.

Ваттметрграмма представляет собой зависимость потребляемой ГШН мощности в зависимости от положения лгтанги. В отличие от динамометрирования, получение ваттметрграммы не связано с применением специальных датчиков, для этого достаточен только контроль тока и напряжения.

Предположение о возможности применения ваттметрграмм для контроля за работой станков-качалок были впервые высказаны еще в 1948г. профессором Куликовским Л.Ф., но не были разработаны методики расшифровки ваттметрграмм. В настоящее время, в связи с повышенными требованиями к качеству и надежности контроля за работой станков-качалок при минимальных затратах по обслуживанию, ваттметрографический метод заслуживает внимание и дальнейшего развития. С помощью этого метода можно определить:

1. Состояние работы насоса.

2. Степень неуравновешенности станка-качалки.

3. Наличие отрицательных усилий, ведущих к преждевременному выходу из строя редуктора.

Метод динамограм.

Динамографирование скважин — это процесс получения зависимости изменения нагрузки в точке подвеса штанг от перемещения этой точки в виде замкнутых кривых, называемых динамограммами.

Динамографирование осуществляется с помощью различных типов динамографов, подразделяющихся по принципу действия преобразующего устройства на гидравлические, механические и электрические. Последние могут быть как ручными, так и автоматическими.

Изменение нагрузки на полированном штоке за время одного полного хода станка-качалки является результатом сложного взаимодействия большого числа различных факторов. Чтобы правильно читать практические динамограммы, необходимо изучить законы их образования при различных условиях работы глубинного насоса.

К наиболее простым случаям относятся следующие:

глубинный насос исправен и герметичен;

погружение насоса под динамический уровень равно нулю;

цилиндр насоса целиком заполняется дегазированной и несжимаемой жидкостью из скважины;

движение полированного штока происходит настолько медленно, что обусловливает полное отсутствие инерционных и динамических нагрузок;

силы трения в подземной части насосной установки равны нулю.

Полученная при этих условиях динамограмма называется простейшей теоретической динамограммой нормальной работы насоса.

Процесс образования простейшей теоретической динамограммы начинает прослеживаться с хода плунжера вниз, когда он с открытым нагнетательным клапаном приближается к своему крайнему нижнему положению. В это время приемный клапан закрыт и вес жидкости принят насосными трубами, которые получили при этом соответствующее удлинение. На полированный шток действует только нагрузка от веса штанг, погруженных в жидкость. В крайнем нижнем положении плунжер останавливается и нагнетательный клапан закрывается. Этот момент на динамограмме отмечается точкой А.

При этом давление жидкости в цилиндре насоса практически равно давлению в насосных трубах над плунжером. В следующий момент полированный шток начинает двигаться вверх. Плунжер остается неподвижным по отношению к цилиндру насоса, так как упругие штанги не могут передать ему движение до тех пор, пока они не получат полного растяжения от веса столба жидкости в насосных трубах, приходящегося на площадь плунжера.

Простейшая теоретическая динамограмма нормальной работы насоса представлена рисунке 1.3.-1.


Рисунок 1.3.-1 Динамограмма нормальной работы насоса.


Величина растяжения штанг прямо пропорциональна величине воспринятой части веса жидкости. Поэтому по мере увеличения растяжения штанг нагрузка на полированном штоке растет. Та часть жидкости, которую приняли на себя штанги, снимается с труб. Вследствие этого трубы сокращают свою длину и их нижний конец, закрытый приемным клапаном, движется вверх. Так как между приемным и нагнетательным клапанами в цилиндре насоса находится практически несжимаемая жидкость, то движение нижнего конца труб вверх вызывает движение вверх и плунжера вместе с насосом.

В любой момент времени текущая величина растяжения штанг равна разности перемещений полированного штока и плунжера. Поэтому, чтобы штанги получили полное растяжение, необходимое для передачи движения плунжеру, полированный шток должен пройти путь, равный сумме растяжения штанг и сокращения труб.

Нагрузка на полированном штоке возрастает при одновременном перемещении его вверх. Поэтому процесс восприя­тия штангами нагрузки от веса жидкости изображается на динамограмме наклонной линией АБ. Линию АБ называют линией восприятия нагрузки.

Точка Б соответствует:

а) окончанию процесса растяжения штанг и одновременного сокращения труб;

б) началу движения плунжера в цилиндре насоса;

в) моменту открытия приемного клапана и началу поступления жидкости из скважины в цилиндр насоса.

Во время последующего движения плунжера вверх на полированный шток действует неизменная нагрузка, равная нагрузке в точке В. Поэтому динамограф прочерчивает прямую горизонтальную линию БВ, параллельную нулевой линии динамограммы.

Точка В соответствует:

а) крайнему верхнему положению полированного штока и плунжера;

б) прекращению поступления жидкости из скважины в цилиндр насоса;

в) моменту закрытия приемного клапана.

Длина линии БВ в масштабе перемещений соответствует длине хода плунжера в цилиндре насоса.

Из крайнего верхнего положения полированный шток начинает движение вниз. Однако плунжер не может двигаться вниз, так как под ним в цилиндре насоса находится практически несжимаемая жидкость. Нагнетательный клапан не может открыться, потому что давление в цилиндре насоса равно нулю, а над плунжером оно равно давлению всего столба жидкости в насосных трубах. Поэтому плунжер остается неподвижным по отношению к цилиндру насоса. Вследствие того, что плунжер стоит на месте, а полированный шток движется вниз, длина штанг сокращается и нагрузка от веса жидкости постепенно передается на трубы. Давление в цилиндре насоса увеличивается пропорционально сокращению штанг.

Воспринимая нагрузку от веса жидкости, трубы соответственно удлиняются и их нижний конец движется вниз. Так как плунжер опирается на несжимаемый столб жидкости в цилиндре насоса, то он движется вниз, оставаясь неподвижным по отношению к цилиндру насоса. Это вынужденное продвижение плунжера замедляет сокращение штанг и снятие нагрузки от веса жидкости. Поэтому штанги получают полное сокращение и полностью снимают с себя нагрузку от веса жидкости только тогда, когда полированный шток проходит расстояние, равное сумме сокращения штанг и растяжения труб от веса жидкости (отрезок ГГ\).

Вследствие уменьшения нагрузки при одновременном перемещении полированного штока вниз, происходит снятие со штанг нагрузки от веса жидкости. Этот процесс изображается на динамограмме наклонной линией ВГ. Линию ВГ называют линией снятия нагрузки.

По уже изложенным причинам линия ВГ может быть принята за практически прямую, параллельную линии АБ.

Точка Г соответствует:

а) окончанию процесса сокращения штанг и одновременного растяжения труб;

б) моменту открытия нагнетательного клапана;

в) началу движения плунжера вниз.

Во время движения плунжера вниз на полированный шток действует неизменная нагрузка, равная весу штанг, погруженных в жидкость. Поэтому динамограф прочерчивает прямую горизонтальную линию АГ, параллельную нулевой линии динамограммы.

Таким образом, простейшая теоретическая динамограмма нормальной работы насоса при упругих штангах и трубах имеет форму параллелограмма.

На основании изложенного можно сформулировать следующие характерные признаки практической динамограммы. дающие право на заключение о нормальной работе насоса:

линии восприятия и снятия нагрузки практически могут быть приняты за прямые;

линии восприятия и снятия нагрузки у практической динамограммы параллельны соответствующим линиям теоретической динамограммы, и следовательно параллельны друг другу;

левый нижний и правый верхний углы динамограммы острые.

Рассмотрим типовые формы динамограмм, которые представлены на рисунке 1.3.-2.


Рисунок 1.3.-2 Типовые формы динамограмм.

1-3 -нормальная работа насоса ; 4-6 —6утечки в нагнетательной части: средняя, большая утечки; выход из строя нагнетательной части соответственно; 7-9 - утечки в приемной части: средняя, большая утечки, выход из строя приемной части соответственно; 10-12 - утечки в приемной и нагнетательной частях; 13-15 -влияние газа на работу насоса: влияние пластового газа; изменение контура; ( влияние газа и утечки в нагнетательной части соответственно; 16-18 -прихват плунжера насоса: НСН2, НСВ1 с выходом из замковой опоры, заедание песком соответ­ственно; 19-20 -утечки в НКТ; 21-22 -фонтанирование; 23 -"высокая посадка плунжера в НСН2; 24 - то же, в НСВ1 без слива из замковой опоры; 25 - низкая посадка плунжера в НСН2; 26 -то же, в НСН1; 27, 28 - негерметичность насоса; 29 -обрыв или отворот штанг в нижней части; 30 -то же, в верхней части; 31-34 -низкий динамический уровень (33 -пробка; 34 - заедание песком)


Расшифровка динамограмм требует учета различных факторов.

Рассмотрим, например, динамограммы 23, 27, 28. Они соответственно, характеризуют, помимо высокой посадки и запаздывания закрытия нагнетательного клапана, негерметичность торцов втулок.

Так, например, динамограмма 23 показывает выход плунжера насоса НСН из цилиндра. Такая же форма динамограммы получена при разъедании у насоса НСН2 и НСВ1 одного стыка втулок в верхней части цилиндра и второго — в нижней части. Плунжер, находясь в нижней части, перекрывает разъеден­ную часть, и утечка не происходит, при ходе вверх он открыва­ет путь для утечки жидкости. Динамограмма 27 указывает на разъедание стыка втулок посередине цилиндра. На динамограмме 28 показан случай, когда разъедены стыковые соединения, расположенные в таких местах, что плунжер в нижнем и в верхнем положениях перекрывает их, а утечка происходит на середине хода плунжера. На динамограмме при этом в середи­не хода получается провал (показан стрелками).


1.4 Обзор и сравнительные характеристики нейрочипов


Основной элементной базой перспективных нейровычислителей являются нейрочипы. Их производство ведется во многих странах мира, причем большинство из них на сегодня ориентированы на закрытое использование (то есть создавались для конкретных специализированных управляющих систем). Прежде чем перейти к рассмотрению наиболее интересных нейрочипов, остановимся на их классификации. По способу представления информации нейрочипы можно разделить на цифровые, аналоговые и гибридные.

По типу реализации нейроалгоритмов: нейрочипы с полностью аппаратной реализацией и с программно-аппаратной (когда нейроалгоритмы хранятся в ПЗУ).

По характеру реализации нелинейных преобразований: на нейрочипы с жесткой структурой нейронов (аппаратно реализованные) и нейрочипы с настраиваемой структурой нейронов (перепрограммируемые).

По возможностям построения нейросетей: нейрочипы с жесткой и переменной нейросетевой структурой.

В отдельные классы следует выделить так называемые систолитические и нейросигнальные процессоры.

Систолические процессоры (процессорные матрицы) - это чипы, как правило, близкие к обычным RISC-процессорам и объединяющие в своем составе некоторое число процессорных элементов. Вся же остальная логика, как правило, должна быть реализована на базе периферийных схем.

У нейросигнальных процессоров ядро представляет собой типовой сигнальный процессор, а реализованная на кристале дополнительная логика обеспечивает выполнение нейросетевых операций (например, дополнительный векторный процессор и т.п.).

Разработка нейрочипов ведется во многих странах мира. На сегодня выделяют две базовые линии развития вычислительных систем с массовым параллелизмом (ВСМП): ВСМП с модифицированными последовательными алгоритмами, характерными для однопроцессорных фоннеймановских алгоритмов и ВСМП на основе принципиально новых сверхпараллельных нейросетевых алгоритмов решения различных задач (на базе нейроматематики).

Рассмотрим популярные нейрочипы.

Нейросигнальный процессор NEUROMATRIX NM6403 (фирма "Модуль", Россия)

Основой NeuroMatrix NM6403 является процессорное ядро NeuroMatrixCore (NMC), которое представляет собой синтезабильную модель высокопроизводительного DSP-процессора с архитектурой VLIM/SIMD (язык Ver ilog). Ядро состоит из двух базовых блоков: 32-бит RISC-процессора и 64-бит векторного процессора, обеспечивающего выполнение векторных операций над данными переменной разрядности (патент РФ.N2131145). Имеются два идентичных программируемых интерфейса для работы с внешней памятью различного типа и два коммуникационных порта, аппаратно совместимых с портами ЦПС TMS320C4x, для возможности построения многопроцессорных систем.Вид нейрочипа NM6403 представлен на рисунке 1.4.-1.


Рисунок 1.4.-1 Нейрочип NM6403.


Основные характеристики:

тактовая частота - 40 MГц;

- 0,5-мкм КМОП-технология;

- корпус 256BGA;

- напряжение питания от 2,7 до 3,6 В;

- потребляемая мощность около 1,3 Вт при 50 МГц;

- условия эксплуатации: -60...+85C.

Процессор NeuroMatrix NM6404.

NeuroMatrix NM6404 представляет собой высокопроизводительный DSP-ориентированный RISC-микропроцессор. В его состав входят два основных блока: 32-разрядное RISC-ядро и 64-разрядное VECTOR-сопроцессор для поддержки операций над векторами с элементами переменной разрядности. NM6404 по системе команд совместим с предыдущей версией NM6403. Имеются два идентичных программируемых интерфейса для работы с внешней памятью различного типа и два коммуникационных порта, аппаратно совместимых с портами ЦПС TMS320C4x, для возможности построения многопроцессорных систем.

Особенности:

- тактовая частота - 133 MГц (8 нс - время выполнения любой инструкции);

- 0,25-мкм КМОП-технология;

- корпус PQFP256;

- напряжение питания - 2,5, 3,3, 5 В;

- потребляемая мощность - около 1,0 Вт;

- условия эксплуатации: -40...+80C.

NNP (Accurate Automation Corp.).

Процессор NNP (Neural Networks Processor ) построен по MIMD-архитектуре, то есть состоит из нескольких миниатюрных процессоров, работающих параллельно. Каждый из них представляет собой быстрый 16-разрядный вычислитель с памятью для хранения синаптических весов. Процессор имеет всего 9 простых команд. Процессоры на кристалле связаны друг с другом локальной шиной. NNP создан в коммерческих целях и доступен на рынке.

В комплект поставки процессора включены средства разработки программ, а также библиотека подпрограмм с реализованными нейросетевыми алгоритмами, такими как сети Хопфилда, сети Кохенена и другими.

Процессор выпускается на платах под шины ISA, VME. Производительность: 140 MCPS - для однопроцессорной системы и 1,4 GCPS - для 10-процессорной системы.

Нейропроцессор МА16 (Siemens).

МА16 изготовлен по 1-мкм КМОП-технологии, состоит из 610 тыс. транзисторов и выполняет до 400 млн. операций умножения и сложения в секунду. Используется в качестве элементной базы нейрокомпьютера Synaps 1 и нейроускорителей Synaps 2 и Synaps 3 (распространяемых сегодня на рынке французской фирмой TIGA TECHNOLOGIES).

МА16 представляет собой программируемый каскадируемый процессор для векторных и матричных операций. Он поддерживает на аппаратном уровне следующие операции:

- матричное умножение;

- матричное сложение/вычитание;

- нормировка результата;

- вычисление векторной нормы (метрики L1 и L2);

- вычисление векторного расстояния (мера Манхэттэна, геометрическое расстояние).

Процессор содержит 4 идентичных процессорных элемента, работающих параллельно. Входные данные имеют точность 16 бит, тактовая частота - 50 мГц. Для операций матричного умножения/сложения скорость вычислений достигает 8ґ10 8 операций/с. Программное обеспечение работает в среде UNIX/XWIND и реализовано на C++. Нейронная сеть тоже описывается на С++ или может вводится интерактивно с помощью графического интерфейса типа OSF/Motif, что позволяет визуализировать конфигурацию чипа после отображения на него структуры сети. Хорошо развиты средства тестирования и эмуляции. С 1995 года МА16 является коммерчески доступным продуктом.

MD1220 (Micro Devices).

Цифровой нейрочип MD1220 фирмы MICRO DEVICES содержит 8 нейронов с 8 связями и 16-разрядные сумматоры. Во внутрикристальной памяти хранятся 16-разрядные веса. Входы имеют одноразрядные последовательные умножители с продолжительностью такта 7,2 мкс. Средняя производительность - около 9 MCPS.

L-Neuro (Philips).

Нейропроцессор L-Neuro фирмы PHILIPS - один из первых нейропроцессоров. На сегодня широко известны две его модификации: L-Neuro 1.0 и L-Neuro 2.3. Вторая версия имеет 12 слоев, а первая - один слой из 16 одноразрядных, или двух 8-разрядных, или 4 4-разрядных, или двух 8-разрядных процессорных элементов, то есть имеет возможность работать в мультиразрядном режиме. На кристалле реализован 1 Кбайт памяти для хранения 1024 8-разрядных или 512 16-разрядных весов. Гибкая каскадируемая структура нейрочипа позволяет использовать его при реализации различных нейросетевых парадигм. При реализации 64 8-разрядных процессорных элементов средняя производительность составляет 26 MCPS (32 MCUPS).


2. Разработка и описание работы структурной схемы


Структурная схема, разрабатываемой системы представлена на рисунке 2.1


Рисунок 2.1 Структурная схема, разрабатываемой системы.


Генератор тактовых импульсов состоит из генератора, выполненного по схеме автогенератора на логических элементах с резонансной частотой 80000 кГц и счетчика-делителя частоты на 3, устраняющий фазовую нестабильность. Генератор тактовых импульсов тактирует импульсы для работы нейросетевого датчика и нейрочипа.Перед началом работы система производит самодиагностику, выполняя проверку блока обработки информации нейросетевого датчика с помощью таких блоков, как цифро-аналоговый преобразователь, усилитель напряжений и фильтр нижних частот. Самодиагностика заключается в следующем : нейрочип выдает кодовую комбинацию на цифро-аналоговый преобразователь, далее цифровой сигнал преобразуется в аналоговый сигнал. Выходное напряжение цифро-аналогового преобразователя равно 5 В, а входное напряжение аналого-цифрового преобразователя, расположенный в нейросетевом датчике равно 5 В, поэтому на выходе цифро-аналогового преобразователя расположен усилитель напряжений. Далее усиленный до необходимого уровня напряжения аналоговый сигнал поступает на фильтр нижних частот, где сигнал фильтруется от помех.И если кодовая комбинация с выхода нейрочипа совпадет с кодовой комбинацией на выходе аналого-цифрового преобразователя, то значит блок обработки информации в нейросетевом датчике исправен и система начинает работу. Цифровой сигнал с датчика поступает на нейрочип, где происходит обработка и сравнение полученных данных с эталонными значениями, записанных в постоянном запоминающем устройстве.Если данные совпадают, то результат записывается в оперативное запоминающее устройство. Если результаты не совпадают, то нейрочип выдает логический ‘0’ на вход устройства отключения электродвигателя, который выполнен на оптроне АОУ103. Его работа заключается в следующем, если станок-качалка находится в нормальном режиме работы, то на входе оптрона логическая ‘1’ светодиод и тиристор работают и в магнитном пускателе реле замкнуто, то есть электродвигатель работает. Если возникает какая-либо неисправность, то то нейрочип выдает логический ‘0’ на вход оптрона и светодиод и тиристор отключаются, и реле размыкается, электродвигатель останавливается. Параллельно информация поступает через универсальный последовательный интерфейс на пульт оператора, где по полученным значениям выстраивается динамограмма, характеризующая работу ШГНУ. И по полученной динамограмме оператор анализирует какой вид неисправности произошел.Оператор также может вносить изменения в работу системы через универсальный последовательный интерфейс или через устройство беспроводной передпчи данных.


3.Выбор и расчет блоков принципиальной схемы


3.1 Генератор тактовых импульсов


Генератор выполнен по схеме автогенератора на логических элементах DD1.1,DD1.2,DD1.3, выполнен на микросхеме К155ЛА3 c кварцевой стабилизацией частоты, кварцевый резонатор ZQ1 с резонансной частотой 80000 кГц.

Схема генератора тактовых импульсов представлена на рисунке 3.1.


Рисунок 3.1 Генератор тактовых импульсов .


Счетчик делитель частоты выполнен на микросхеме К561НЕ10 обеспечивает деление на 3. Предназначен для устранения фазовой нестабильности частоты.

Ближайшие номиналы резисторов и конденсаторов из ряда Е192:

R1, R2: С2-34-0.125-402 Ом ±0.5%;

С1: КТ-2-300В-18 пФ±5%.


3.2 Цифро-аналоговый преобразователь


ЦАП выполнен на микросхеме AD9397 фирмы ‘Analog Devices’.Схема ЦАП представлена на рисунке 3.2.


Рисунок 3.2 Цифро-аналоговый преобразователь.


Технические характеристики указаны в приложении.


3.3 Усилитель напряжений


Усилитель выполнен на основе ОУ 140УД26.

Рассчитаем его коэффициент усиления:

Uвых=10.25 В - максимальное входное напряжение АЦП

Uвх =5 В – максимальное выходное напряжение ЦАП

Ku=Uвых/Uвх=10.25/5=2.05

Схема усилителя представлена на рисунке 3.3.


Рисунок 3.3 Усилитель напряжений.


Рассчитаем его коэффициент усиления:

Uвых=10.25 В - максимальное входное напряжение АЦП

Uвх =5 В – максимальное выходное напряжение ЦАП


Ku=Uвых/Uвх=10.25/5=2.05


Выберем R4 равным 10 кОм. Так как коэффициент усиления равен 2.05, то R3=4,89 кОм


R5= R3*R4/(R3+R4)= 3,28 кОм


Подстроечный резистор R6 примем равным 10 кОм.

Из стандартного ряда номинальных значений Е192 выберем следующие значения номиналов резисторов:


R4, R6: С2-29В-0.125-10 кОм±0.1%;

R3: С2-29В-0,125-4,87 кОм±0, 1%;

R5: С2-29В-0,125-3.28 кОм±0,1%.

Основные параметры операционного усилителя К140УД26:

Предельно допустимые значения параметров и режимов:


Uпит= 13.5…16.5В;

Uвх. сф 10В;

Rн= 2КОм ;

Т= -100…+700

Электрические параметры: Uвых max=12В Uсм=30мкВ

Iвх= 40мА Iвх=35мА

Iпот=4.7мА К=1000000

f1=20МГц Uвх. сф max =11В

Кос.сф=114Дб Uсм/T=0.6мкВ/С0

ТКIвх =1нА/С0 V u вых =11В/мкс.


3.4 Фильтр нижних частот


В измерительной технике обычно используются фильтры четных порядков, именно они наиболее удобным образом реализуются на основе ОУ.

Выбираем фильтр Баттерворта (структура Рауха).

В качестве звеньев составляющих фильтры четных порядков, используются звенья второго порядка.

Схема фильтра нижних частот представлена на рисунке 3.4.


Рисунок 3.4. Фильтр нижних частот.


Исходными данными для расчёта являются частота среза фильтра fв=1Гц.

Коэффициент передачи фильтра в полосе пропускания Кус=1, =1,41,с=1,А=1.

Рассчитаем значения резисторов и конденсаторов:


=10 мкФ

=2 мкФ

=31329 Ом

=31329 Ом

=40467,3 Ом


Из стандартного ряда номинальных значений Е192 выберем следующие значения номиналов резисторов и конденсаторов:


R7,R8: С2-29В-0,25Вт-31,6 кОм±0,1%

R9: С2-29В-0,25Вт-40,7 кОм±0,1%

С2: К77-1-100В-10 мкФ±2%

С3: К77-1-100В-2 мкФ±2%


3.5 Нейрочип


Нейрочип необходим для обучения входным эталонным сигналам и для обработки информации.

Схема нейрочипа NM6403 приведена на рисунке 3.5.



Рисунок 3.5 Нейрочип.


Основные характеристики процессора NeuroMatrix NM6403:

- тактовая частота - 40 МГц (машинный такт - 25 нс);

- число эквивалентных вентилей - 115.000;

- технология 0,5 мкм;

корпус 256BGA;

- малое напряжение питания, от 2.7В до 3.6В;

- адресное пространство - 16 Гбайт;

- формат скалярных и векторных данных:

32-разрядные скаляры;

вектора с элементами переменной разрядности от 1 до 64, упакованные в 64- разрядные блоки данных;

аппаратная поддержка операций умножения вектора на матрицу или матрицы на матрицу;

аппаратная реализация функции насыщения два устройства генерации адреса;

- регистры:

8 32-разрядных регистров общего назначения;

8 32-разрядных адресных регистров;

3 внутренних памяти по 32*64 бит;

специальные регистры управления и состояния;

- команды процессора NM6403 32- и 64-разрядные (одна команда обычно задаёт две операции);

- два 64-разрядных программируемых интерфейса для работы с любым типом внешней памяти. Каждый интерфейс поддерживает;

- обмен с двумя банками памяти разного типа (статическая или динамическая память);

- два скоростных байтовых коммуникационных порта ввода/вывода, аппаратно совместимых с портами TMS320C4x.


3.6 Оперативное запоминающие устройство


Все ОЗУ делятся на две большие группы: статические и динамические. В накопителях статических ОЗУ применяются триггерные элементы памяти. В ОЗУ динамического типа запоминающим элементом служит конденсатор, в котором информация хранится в форме наличия или отсутствия заряда.

Статические ОЗУ образуются матрицей запоминающего элемента , каждый из которых может быть установлен в одно из двух состояний, сохраняющихся при поданном напряжении питания.

Наибольшим быстродействием обладают биполярные ОЗУ, построенные на основе элементов ЭСЛ и ТТЛШ, однако эти МС имеют самый высокий уровень энергопотребления .

Схема ОЗУ представлена на рисунке 3.6.


Рисунок3.6 Оперативное запоминающие устройство.


В данном дипломном проекте ОЗУ предназначено для хранения программных настроек, весовых коэфициентов, набора динамограм, соответствующим разным видам неполадок на ШГНУ, результаты сравнения эталонных значений с полученными данными.

Основными параметрами микросхем ОЗУ являются: емкость хранящаяся в ОЗУ, быстродействие, мощность.


3.7 Постоянное запоминающие устройство


В качестве запоминающего устройства в разрабатываемом устройстве была выбрана микросхема Flash памяти – M25P80 фирмы STMicroelectronics.

Микросхема имеет встроенный последовательный интерфейс. Последовательный формат записи позволяет упростить процедуру программирования и уменьшить величину корпуса (у данной микросхемы – DIP8) и количество управляющих сигналов.

Схема, выбранного постоянного запоминающего устройства представлена на рисунке 3.7.


Рисунок 3.7 Постоянное запоминающее устройство.


В отличие от модулей оперативно запоминающих устройств (ОЗУ) данное решение обеспечивает сохранность информации при непредвиденном отключении питания, что позволяет исключить использование резервного питания, которое создает большие трудности в обслуживании.

Также данный выбор имеет преимущество и перед модулями перепрограммируемых постоянных запоминающих устройств (ППЗУ), так как для записи информации в ППЗУ обычно требуется подавать кратковременно напряжение, значительно большее напряжения штатного питания. Это неудобно тем, что значительно увеличивает количество элементов питания и требует добавления в схему дополнительных средств аналоговой коммутации.

Основные характеристики микросхемы Flash памяти M25P80:

  • Емкость - 8 Мбит

  • Запись страницы (256 байт) – 1.5 мс

  • Стирание сектора (512 Кбит) – 2 с

  • Полное стирание (8 Мбит) – 10 с

  • Напряжение питания – 2.7-5.5 В (однополярное)

  • Максимальная тактовая частота – 25 МГц

  • Режим пониженного потребления – 1 мкА

  • Более 100000 циклов стирания/записи для каждого сектора

  • Более 20 лет хранения информации


3.8 Универсальный последовательный интерфейс


Для проектируемоой системы в качестве интерфейса был выбран USB (UniversalSerial Bus). Он удобен тем, что данный интерфейс входит в состав практически всех персональных компьютеров, выпускаемых на данный момент.

Схема, выбранного интерфейса представлена на рисунке 3.8.


Рисунок 3.8 Универсальный последовательный интерфейс.


Выбранный интерфейс позволяет производить обмен информацией в последовательном формате со скоростью до 12 Мбит/сек и хотя для самого комплекса скорость обмена не является принципиальной характеристикой, ПК используемый для ввода информации может быть критичен ко времени, отводимому на обмен.

Также данный интерфейс имеет значительное преимущество, поскольку он позволяет производить «горячее» подключение устройства к ПК. Т.е. нет необходимости производить выключение ПК, приостанавливающее выполнение текущих операций.

Конкретная микросхема – SL-11 USB Controller фирмы Scan Logic – была выбрана, поскольку у нее в относительно небольшом корпусе (28PLCC) интегрированы все необходимые компоненты: приемник, передатчик, модуль буферной памяти, параллельный микропроцессорный интерфейс. Из дополнительных элементов необходимы только кварцевый резонатор, для задания тактовой частоты внутреннего генератора, и сам разъем.

Основные характеристики USB контроллера SL-11:

- стандартный микропроцессорный интерфейс;

- поддержка канала ПДП;

- двунаправленный 8-и разрядный параллельный интерфейс;

- 256 байт памяти на кристалле;

- 4 контакта USB интерфейса;

- USB передатчик;

- 5В, 0.8мк КМОП технология;

- 28PLCC корпус.

Передатчик работает полностью в соответствии со стандартом USB версии 1.0 и может вести обмен в режиме полной скорости – 12 Мбит/сек.


3.9 Приемопередатчик


Для проектируемой системы в качестве усройства беспроводной передачи данных применен однокристальный трансивер XE1203, предназначенный для работы в диапазоне частот ISM (433МГц / 868МГц / 915МГц). Высокая степень интеграции позволяет достичь максимальной гибкости использования устройства при минимальном количестве внешних элементов. Трансивер XE1203 обеспечивает связь со скоростью передачи до 152,3 кБод и оптимизирован для приложений требующих малое энергопотребление, большую выходную мощность и высокую входную чувствительность. Схема приемопередатчика представлена на рисунке 3.9.-1.


Рисунок 3.9.-1 Приемопередатчик.


Приемопередатчик функционально включает в себя приемник, передатчик, синтезатор частоты, колебательный контур и некоторые другие узлы. И для каждого блока необходимо сделать согласование цепей. В данном проекте смоделирована схема в ‘Micro-Cap Evaluation 7.0’ и произведен расчет согласования цепей передатчика. Схемы согласования цепей остальных блоков и номиналы пассивных элементов взяты с сайта производителя (www.xemics.com).

Схема согласования цепей передатчика представлена на рисунке 3.9.-2.


Рисунок 3.9.-2 Согласование цепей передатчика.


Рассчитаем значения конденсаторов и индуктивностей:



Примем L3=12 нГн , тогда


, откуда

С10=3.03 пФ


Примем L2=27 нГн, тогда


, откуда

С11=1.12 пФ


Смоделируем модель согласования цепей передатчика в ‘Micro-Cap’.

Схема модели представлена на рисунке 3.9.-3.


Рисунок 3.9.-3 Модель согласования цепей передатчика в ‘Micro-Cap’.


Произведем АС анализ (анализ частотных характеристик).

Полученный график представлен на рисунке 3.9.-4.


Рисунок 3.9.-4 Анализ частотных характеристик.


По графику видно, что при рассчитанных значениях конденсаторов и индуктивностей обеспечивается требуемая резонансная частота 915 МГц.

Основные технические характеристики XE1203:

- Выходная мощность: до +15 дБм на нагрузку 50 Ом (тип);

- Чувствительность входа: до -113 дБм (тип);

- Потребление: Rx=14 мА; Tx=62 мА (15 дБм);

- Напряжение питания: до 5 В;

- Скорость передачи: от 1,2 до 152,3 кБод (NRZ-кодирование);

- Режим Konnex-совместимости;

- 11-разр. Кодек Баркера;

- Встроенный синтезатор частоты с шагом 500Гц;

- Двух уровневая FSK модуляция с непрерывной фазовой функцией;

- Распознавание входных данных (используется для выхода из спящего режима);

- Система синхронизации входных данных (Bit-Synchronizer);

- Контроль уровня принимаемого сигнала (RSSI);

- Контроль частоты (FEI).


3.10 Расчет надежности


Формулы необходимые для расчета:

Интенсивность потока отказов устройства рассчитывается по формуле:


, где


- интенсивность потока отказов i-го однотипного элемента;

m- количество однотипных элементов;

Среднее время работы устройства обратно пропорцианально интенсивности

отказов:


;


Время безотказной работы с заданной вероятностью (Р=0.99):


;


Вероятность отказов за заданное время функционирования изделия

(t=10000 ч):


.


Расчет надежности генератора тактовых импульсов


Укажем в таблице 1 исходные данные для расчета параметров надежности.


Таблица 1.

Элемент

устройства

Кол-во

элементов,m

Интенсивность

потока

отказов элемента,

Интенсивность потока

отказов всех элементов,

1

Кварц

1

0.025

0.025

2

Резистор

2

0.15

0.3

3

Конденсатор

1

0.035

0.035

4

Интегральная МС

2

0.010

0.020

5

Многоштырьковый

разъем

1

0.020

0.020

6

Пайка

25

0.010

0.25

7

Печатный проводник

16

0.010

0.16


Интенсивность потока отказов всех элементов:


(0.025+0.3+0.035+0.020+0.25+0.16)* =0.79* 1/ч


Среднее время работы устройства обратно пропорцианально интенсивности отказов:


125581ч


Время безотказной работы с заданной вероятностью (Р=0.99):


= 12658.2*(1-0.99)=1255.8 ч


Вероятность отказов за заданное время функционирования изделия

(t=10000 ч):


0.8937


Расчет надежности цифро-аналогового преобразователя


Укажем в таблице 2 исходные данные для расчета параметров надежности.


Таблица 2.

Элемент

устройства

Кол-во

элементов,m

Интенсивность

потока

отказов элемента,

Интенсивность потока

отказов всех элементов,

1

Интегральная МС

1

0.010

0.010

2

Пайка

17

0.010

0.17

3

Печатный проводник

15

0.010

0.15


Интенсивность потока отказов всех элементов:


(0.010+0.17+0.15)* =0.33*1/ч


Среднее время работы устройства обратно пропорцианально интенсивности отказов:


303030 ч


Время безотказной работы с заданной вероятностью (Р=0.99):


303030.3*(1-0.99)= 3030 ч


Вероятность отказов за заданное время функционирования изделия

(t=10000 ч):


0.9374


Расчет надежности усилителя напряжений


Укажем в таблице 3 исходные данные для расчета параметров надежности.


Таблица 3

Элемент

устройства

Кол-во

элементов,m

Интенсивность

потока

отказов элемента,

Интенсивность потока

отказов всех элементов,

1

Интегральная МС

1

0.010

0.010

2

Резистор

4

0.15

0.6

3

Пайка

11

0.010

0.11

4

Печатный проводник

9

0.010

0.09


Интенсивность потока отказов всех элементов:


(0.010+0.6+0.11+0.09)* =0.81*1/ч


Среднее время работы устройства обратно пропорцианально интенсивности отказов:


123457 ч


Время безотказной работы с заданной вероятностью (Р=0.99):


123457*(1-0.99)= 1234.6 ч


Вероятность отказов за заданное время функционирования изделия

(t=10000 ч):

0.9264


Расчет надежности фильтра нижних частот


Укажем в таблице 4 исходные данные для расчета параметров надежности.


Таблица 4.

Элемент

устройства

Кол-во

элементов,m

Интенсивность

потока

отказов элемента,

Интенсивность потока

отказов всех элементов,

1

Интегральная МС

1

0.010

0.010

2

Резистор

3

0.15

0.45

3

Конденсатор

2

0.075

0.15

4

Пайка

9

0.010

0.09

5

Печатный проводник

8

0.010

0.08


Интенсивность потока отказов всех элементов:


(0.010+0.45+0.15+0.09+0.08)* =0.78*1/ч


Среднее время работы устройства обратно пропорцианально интенсивности отказов:


128205 ч


Время безотказной работы с заданной вероятностью (Р=0.99):


128205*(1-0.99)= 1282 ч


Вероятность отказов за заданное время функционирования изделия

(t=10000 ч):


0.9134


Расчет надежности нейрочипа


Укажем в таблице 5 исходные данные для расчета параметров надежности.


Таблица 5

Элемент

устройства

Кол-во

элементов,m

Интенсивность

потока

отказов элемента,

Интенсивность потока

отказов всех элементов,