Охранная система с дистанционным управлением (48017)

Посмотреть архив целиком

Содержание


Введение

1. Обзор существующих схем

1.1 Простейшая система оповещения

1.2 Ультразвуковое охранное устройство

1.3 Охранная система с голосовым оповещением по телефонной линии

1.4 Определение требований к охранной системе

2. Построение структурной схемы

3. Выбор и обоснование элементной базы

3.1 Особенности отечественных однокристальных микроконтроллеров

3.2 Особенности микроконтроллеров фирмы Atmel

3.3 Особенности микроконтроллеров фирмы Microchip

3.4 Основные характеристики PIC18F452

3.5 Выбор микроконтроллера

4. Построение принципиальной схемы

4.1 Построение блока питания

4.2 Построение блока индикации

4.3 Построение преобразователя уровня.

4.4 Подключение различных датчиков

4.5 Построение блока управления

4.6 Построение ПДУ

4.7 Расчёт потребляемой мощности

4.8 Расчёт блока питания

4.9 Расчет быстродействия

4.10 Расчёт надёжности

5. Разработка печатной платы

6. Базовое программное обеспечение

6.1 Блок-схема алгоритма работы микроконтроллера

6.2 Разработка программы поддержки

6.3 Среда проектирования

7. Экономическая часть

7.1 Расчёт себестоимости

7.2 Расчет заработной платы и статей калькуляции

8. Охрана труда и техника безопасности

8.1 Анализ опасных и вредных факторов при изготовлении устройства

8.2 Подготовка программ.

8.3 Изготовление печатной платы

8.4 Мероприятия, обеспечивающие безопасные условия труда при изготовлении устройства

8.5 Организационные мероприятия

8.6 Технические мероприятия

8.7 Вопрос экологии

8.8 Выводы по охране труда

Заключение

Список литературы

Приложение А. Листинг программы



Введение


Реализация концепции RISC-архитектуры в 8-разрядных микроконтроллерах существенно расширила среду их применения. К традиционным приложениям таких МК (телекоммуникации, системы сбора данных, системы охраны, автоэлектроника, системы отображения информации и т. д.) сегодня прибавляются такие, где раньше использовались только более мощные 16- и 32-разрядные процессоры с функцией цифровой обработки сигналов, например, обработка видеосигналов и векторное управление электроприводом. Продвижение 8-разрядных RISC-микроконтроллеров на этот рынок произошло во многом благодаря тому, что они нередко предлагают оптимальное соотношение производительности и цены.

Современные 8-разрядные RISC-микроконтроллеры занимают промежуточную нишу по своим техническим характеристикам между классическими 8-разрядными микроконтроллерами и их 16-разрядными кузенами. Высокая производительность и меньшая, чем у 16-разрядных МК, цена превращают RISC-микроконтроллеры в мощный инструмент для построения эффективных многофункциональных контроллеров, используемых в самых разнообразных приложениях. Особенно большую популярность RISC-микроконтроллеры получили в построении охранных систем.

На сегодняшний день различные охранные устройства пользуются большой популярностью. Их устанавливают в квартирах, учреждениях, на промышленных объектах. В связи с бурным развитием компьютерных технологий в последние годы, большинство учебных заведений широко внедряет в учебный процесс использование компьютеров. Закупаются новые компьютерные классы, и обновляется старый парк вычислительных машин. Стоимость современных компьютерных классов достаточно высока и в связи с этим возникает необходимость их охраны. Помимо охраны имущества от хищения необходима также защита от возникновения пожара.

Существует немало фирм, которые предлагают потребителю различные модификации охранных систем. Все они существенно различаются как функциональным возможностям, так и по цене. Большинство современных охранных систем имеют достаточно высокую стоимость, если имеют большой набор функций.

Целью данного дипломного проекта является создание недорогой многофункциональной охранной системы (далее ОС), отвечающей современным требованиям безопасности.

Основные задачи дипломного проекта следующие:

Обзор аналогов, определение требований к ОС.

Выбор элементной базы;

Разработка принципиальной схемы и печатной платы;

Разработка программного обеспечения;

Расчет себестоимости ОС.



1. Обзор существующих схем


1.1 Простейшая система оповещения


Схема простейшего охранного устройства приведена на рисунке 1.1.1. Объект, нуждающийся в охране, окружают по периметру медным обмоточным проводом диаметром 0,1...0,3 мм. Концы шлейфа подключают к электронному автомату через гнезда XS1. Пока шлейф не поврежден, через его небольшое сопротивление база транзистора VT1 соединена с эмиттером. В это время транзистор и тиристор VS1 закрыты, потребляемый устройством ток (около 100 мкА) определяется в основном сопротивлением резистора R1 и начальным током коллектора транзистора. При обрыве шлейфа на базу транзистора через резистор R1 подается отрицательное напряжение смещения, которое открывает транзистор. Через открывшийся транзистор и резистор R3 поступает положительное напряжение на управляющий электрод тиристора VS1.

Тиристор при этом открывается, срабатывает электромагнитное реле К1 и своими контактами (на схеме не показаны) включает звуковой сигнализатор, например электрический звонок. После устранения обрыва провода автомат устанавливают в исходное состояние (дежурный режим) кратковременным выключением питания (SA1).


Рисунок 1.1.1 – простейшее охранное устройство.


1.2 Ультразвуковое охранное устройство


Устройство состоит из датчика перемещения, звукового сигнала и автономного блока питания. Срабатывание звукового сигнала происходит при перемещении какого-нибудь предмета, при этом вначале подается короткий предупреждающий звуковой сигнал. Если в помещение зашел хозяин, этот сигнал предупредит его, что устройство сработало и его нужно выключить. Если же этого не сделать, то через минуту устройство подаст громкий звуковой сигнал, звучащий в течение нескольких минут, а затем снова перейдет в режим охраны.

Схема устройства показана на рисунке 1.2.1.. Генератор излучателя построен по схеме емкостной трехточки. Излучатель BQ1 включен в цепь обратной связи транзистора VT1, Частота колебаний генератора зависит от резонансной частоты излучателя BQ1 и параметров контура L1С1. Мощность излучения регулируют подбором резистора R3, а подстройку частоты производят подбором конденсатора С1.


Рисунок 1.2.1 – ультразвуковое охранное устройство.


Приемник состоит из ультразвукового микрофона ВМ1, усилителя принимаемого сигнала на ОУ DA1.1, детектора на элементах R11, VD2, С8, R13, усилителя продетектированного сигнала на ОУ DA1,2 и транзисторного ключа VT2VT3. Параметры детектора подобраны таким образом, чтобы подавление несущей частоты в диапазоне 25...35 кГц было максимальным, а ослабление низкочастотных пульсаций 1...100 Гц — минимальным. Цепь C7R12C9R14 задает коэффициент усиления и полосу пропускания ОУ DA1.2, При появлении переменного напряжения на его выходе положительная полуволна через конденсатор С10 открывает транзисторный ключ VT2VT3, а отрицательная полуволна через диод VD3 перезаряжает конденсатор С10.

Сигнальное устройство включает в себя триггер Шмидта на элементах DD1 .1, DD1.2, узел управления на элементах DD1.3, DD1.4, усилитель тока на транзисторах VT5, VT6, тиристор VS1 и излучатель звукового сигнала BF1, При включении питания заряжается конденсатор С12, Примерно через 1 ,,,1,5 мин на выводе 2 элемента DD1 .1 возникает высокий уровень. Теперь, если сработает детектор перемещения, транзисторы VT2, VT3 и VT4 откроются, высокий уровень на выводе 1 элемента DD1.1 переключит триггер. На выходе DD1.1 возникнет низкий уровень, а на выходе триггера (вывод 4 DD1.2) — высокий. Цепь С13R23 задает длительность короткого звукового сигнала — 0,1 с, а цепь R21С1 4 — задержку подачи длительного звукового сигнала — 60 с. Цепь R20C12 определяет длительность звукового сигнала и задержку работы устройства после включения питания.


1.3 Охранная система с голосовым оповещением по телефонной линии


Данное устройство позволяет охранять помещение от посторонних при помощи лазерного датчика. При пересечении лазерного луча устройство выдает сигнал тревоги, производит набор номера телефона и выдаёт голосовое сообщение в телефонную линию. Устройство также позволяет защитить охраняемый объект от возникновения пожара.

Принципиальная схема устройства приведена на рисунке 1.3.2. Устройство построено на базе микропроцессора Z80 и состоит из следующих функциональных блоков, изображённых на рисунке 1.3.1.


Рисунок 1.3.1 – Блок схема охранной системы


Блок управления состоит из микропроцессора, ОЗУ статического типа и ПЗУ, в котором зашита программа. Интерфейс ввода-вывода выполнен на микросхеме КР580ВВ55А, которая представляет собой программируемый интерфейсный адаптер (ПИА). К нему подключены клавиатура, дисплей, охранные датчики а также аналоговый компаратор, выполняющий функции модема. Для воспроизведения звука использован программируемый генератор звуков фирмы Yamaha.

Все настройки вводятся с клавиатуры. Устройство позволяет задавать пароль, ввод которого отключает режим охраны, громкость выдаваемого голосового сообщения а также номер телефона, по которому устройство будет звонить и сообщать сигнал тревоги.

Устройство позволяет использовать не только 6-значный городской номер, но и федеральный номер мобильного телефона а также междугородний. При вводе федерального номера нужно вводить цифру 8 для выхода на межгород.


Случайные файлы

Файл
3570-1.rtf
128943.rtf
13863.rtf
28742.rtf
142287.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.