Архитектура промышленной сети BitBus (46849)

Посмотреть архив целиком

Введение


Любая современная система управления состоит из двух компонентов: компьютера и системы связи. Любой из них может преобладать в зависимости от конкретных функций, но оба существуют в той или иной степени. Существуют системы для зданий, заводов, больниц, железных дорог, кораблей, автодорог, квартир и т.д. По пути следования электроэнергии от электростанции к подстанциям, распределительным трансформаторам, питающим дома и предприятия, существует управляющая система, использующая компьютеры. В больнице за пациентом наблюдают с помощью мониторов, диагностического и лечебного оборудования, подключенного к компьютерной сети. Спутники тоже имеют свою управляющую систему, где компьютеры хранят и обрабатывают информацию. Количество датчиков и электроприводов в управляющих системах обычно составляет от десятков до сотен тысяч единиц. Обычно, каждое управляемое устройство имеет 2-3 порта ввода/вывода. В таких системах количество узлов (датчиков и электроприводов) значительно больше, чем управляющих компьютеров, и все они должны быть обеспечены связью.

В настоящее время технологии сетей управления отстают от передовых компьютерных решений примерно на десять лет. Основным направлением развития является улучшение связей внутри распределенных систем. На первый взгляд, требования к системам контроля, работающим в различных областях должны быть также различны. Но, оказывается, подобно компьютерам, установленным на различных предприятиях, в офисах или дома, системы контроля выполняют схожие функции. Также похожи и требования к адресации, надежности, размеру пакетов и др. Конечно существуют и различия в типах разъемов и кабелей, установке и управлении.


  1. Обзор сетевых технологий контроля


    1. Определение требований к системам управления


Существуют общие функции систем для работы в любой среде и существуют уникальные, то есть присущие каждому конкретному использованию.

Требования к системе можно разделить на семь направлений:

  1. Размер системы и взаимоувязанность составляющих ее частей

  2. Надежность системы

  3. Гибкость системы

  4. Производительность системы

  5. Системная интеграция

  6. Установка, обслуживание и диагностика

  7. Расходы в течение жизненного цикла

Все эти пункты и направления должны определяться в контексте конкретной системы с целью получения правильных результатов.


    1. Размер системы и взаимоувязанность составляющих ее частей


Размер системы и ее разделение на подсистемы обуславливает адресное пространство, (количество отдельно адресуемых узлов системы) его деление между подсистемами, что сказывается на удобстве использования и производительности системы. Обычно один агрегат или машина содержит 10 – 100 адресуемых элементов. Подсистема может содержать 10 – 32000 узлов и в системе может существовать более 100 подсистем. Можно организовать систему по иерархическому принципу, и обходится на каждом уровне небольшим адресным пространством, но такие системы уже устарели, т.к. одноуровневая архитектура обладает лучшими характеристиками. В случае использования одноуровневой архитектуры сегментация осуществляется логически. С этой целью применяются маршрутизаторы сетевого уровня. Внутри одноуровневой архитектуры гибкая система адресации позволяет использовать короткие адреса в небольших системах и длинные в системах контроля крупных предприятий, офисных зданий и транспортных объединений.


    1. Надежность системы


Задача, решаемая системой

Применяемое решение.

Надежная передача сообщений, контроль целостности

  • N-кратная передача сообщения без подтверждения.

  • Передача сообщений одноадресных, мультиадресных, циркулярных с получением подтверждения от каждого (а не любого) адресуемого узла.

  • Проверочная циклическая контрольная сумма.

  • Механизм запрос-ответ для подтверждения успеха приема.

  • Система аутентификации отправителя сообщений.

Защита от сбоев

  • Избыточность за счет дублирования узлов, линий, сетей.

  • Кольцевые топология для сохранения связи при локализованном обрыве.

Изоляция сбойных участков и восстановление.

  • Применение маршрутизаторов и кольцевой топологии

  • Автоматическая идентификация сбойного узла.

  • Дистанционное управление посредством удаленных команд процессом изоляции и отключения узлов.

Таблица 1.1.


На первый взгляд кажется, что наличие механизма передачи сообщений без подтверждения приема отрицательно влияет на надежность системы, но на самом деле это не так. В случае если необходимо передать сообщение большому количеству устройств одновременно, их подтверждения получения вызовут приостановку передачи других сообщений, к тому же, многие узлы не имеют устройств обратной связи. Ожидание подтверждения может создавать состояния ожидания в системе. Конечно, никто не спорит, что тотальное применение этого механизма снижет общую надежность системы.

В случаях повышенных требований к надежности системы применяется механизм обязательного подтверждения. Функция подтверждения приема повышает надежность системы. Множественные подтверждения позволяют получить подтверждения от большого количества узлов. Однако, следует учитывать, что этот механизм предъявляет повышенные требования к протоколу и его реализации.

Аутентификация отправителя сообщений необходима для защиты от несанкционированного доступа. Эта функция существует почти во всех системах управления: от домашней до промышленной.

Защита от сбоев может осуществляться с помощью дополнительных трансиверов, узлов, линий или даже сетей. Кольцевые участки топологии представляют прекрасную защиту против всевозможных обрывов кабеля. Таким образом подстраховываются от широкого круга инцидентов от потери кабеля в распределительных щитах до случайной обрезки кабеля во время профилактических работ электриков. Однако это требует дополнительных возможностей, как от трансиверов, так и от архитектуры всей системы. Для первых необходима поддержка быстрого гашения сигнала при достижении им конца пути, для второго требуется система идентификации и уничтожения дубликатных пакетов.


    1. Гибкость системы


Необходимость расширения системы во время ее работы зависит от конкретной области применения. Управляющая система автомобиля вряд ли нуждается в расширении (если конечно Вам лично этого не захочется). С другой стороны, поточная линия обязательно перенастраивается и снабжается дополнительными, порой загадочными, датчиками при каждом переходе на новую модель продукции. Системы контроля зданий или предприятий нуждаются в расширении несколько раз в течение жизненного цикла. В случаях если предприятие осваивает новую продукцию или расширяет производство, существующие датчики либо заменяются, либо дополняются более точными. Вот тут то и возникает необходимость гибкости наращиваемости длины линий (проводов или беспроводных каналов) а так же свободной топологии. Возможность тянуть провод от ближайшей доступной точки без оглядки на ограничения топологии и возможность добавления дополнительных репитеров по мере необходимости сильно продлевает срок службы Вашей управляющей сети. Однако для этого требуется наличие энергонезависимой памяти в каждом узле сети и наличие как локальной (на самом узле) так и удаленной процедур добавления нового устройства в протоколе управления устройствами. Эти процедуры должны быть определены недвусмысленно, ясно и четко и быть безошибочно реализованы так чтобы всевозможные узлы и приборы могли взаимодействовать между собой.


Задача, решаемая системой

Применяемое решение

Расширение системы,

Изменения

  • Достаточное количество свободных адресов.

  • Возможность легкого расширения.

  • Свободная топология подключения, беспроводная связь.

  • Легкое подключение/отключение устройств (физически и логически).

Таблица 1.2.


    1. Производительность системы


Производительность системы в целом зависит от многих факторов. Вот некоторые из них.

  • Максимально возможная скорость передачи.

Этот параметр непосредственно влияет на время прохождения пакета в линии. Например, для 100-битного пакета время прохождения составляет 0,1 микросекунды при скорости 1Mbps и 1 миллисекунду при скорости 100Kbps. Очень полезна возможность варьировать скорость передачи в широких пределах, от нескольких килобит в секунду до мегабайта в секунду. Обдуманный выбор скорости передачи - наиболее желательный способ оптимизации соотношения цена/производительность для трансиверов, среды передачи и сетей связи.

  • Схема доступа к среде передачи.

Демократический доступ к среде передачи для всех при минимальном количестве узлов идентификации – крайне необходим для предотвращения возникновения патологической ситуации для узлов с низким приоритетом. При недемократической схеме доступа, когда приоритет является единственным критерием доступа к сети, узлы с низким приоритетом могут быть полностью задавлены более разговорчивыми. Это может снизить их производительность до неприемлемого уровня. В мире PLC контроллеров (Programmable Logical Controller), который наиболее “подвинут” в сторону “детерминизма” и где доступ к среде возможен лишь в фиксированные промежутки времени, схема с мультиплексированной шиной управляемой приоритетами наименее приемлема.


Случайные файлы

Файл
17929.rtf
61965.rtf
174779.rtf
178570.rtf
6760-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.