9-этажный жилой дом со встроенными помещениями (CBRR1357)

Посмотреть архив целиком

Архитектурно - строительный раздел

Общая часть

Основным назначением архитектуры всегда являлось создание необходимой для существования человека жизненной среды, характер и комфортабельность которой определялись уровнем развития общества, его культурой, достижениями науки и техники. Эта жизненная среда, называемая архитектурой, воплощается в зданиях, имеющих внутреннее пространство, комплексах зданий и сооружений, организующих наружное пространство - улицы, площади и города.

В современном понимании архитектура - это искусство проектировать и строить здания, сооружения и их комплексы. Она организует все жизненные процессы. По своему эмоциональному воздействию архитектура - одно из самых значительных и древних искусств. Сила ее художественных образов постоянно влияет на человека, ведь вся его жизнь проходит в окружении архитектуры. Вместе с тем, создание производственной архитектуры требует значительных затрат общественного труда и времени. Поэтому в круг требований, предъявляемых к архитектуре наряду с функциональной с функциональной целесообразностью, удобством и красотой входят требования технической целесообразности и экономичности. Кроме рациональной планировки помещений, соответствующим тем или иным функциональным процессам удобство всех зданий обеспечивается правильным распределением лестниц, лифтов, размещением оборудования и инженерных устройств (санитарные приборы, отопление, вентиляция). Таким образом, форма здания во многом определяется функциональной закономерностью, но вместе с тем она строится по законам красоты.

Сокращение затрат в архитектуре и строительстве осуществляется рациональными объемно - планировочными решениями зданий, правильным выбором строительных и отделочных материалов, облегчением конструкции, усовершенствованием методов строительства. Главным экономическим резервом в градостроительстве является повышение эффективности использования земли.



Исходные данные

Согласно задания на дипломный проект на тему: 9-этажный 744-квартирный жилой дом с встроенными парикмахерской, Бюро путешествий и магазином исходными данными являются:

  1. Задание на дипломное проектирование.

  2. Геологический разрез грунтового основания (см. схему 1).

  3. Место расположения жилого дома (см. схему 2).

Жилой дом расположен в 11-ом квартале города Северск Томской области, главным фасадом выходит на главный проспект города - проспект Коммунистический и ул. Солнечная. Климат региона резко континентальный, относится к 1-му климатическому району с минимальной зимней температурой - 45°C. Площадка строительства попадает на территорию, застроенную ранее частными домами.

Жилой дом относится к многоэтажным жилым домам секционного типа:

  • класс здания по степени долговечности = 1,

  • класс здания по степени огнестойкости = 1,

  • генеральный подрядчик - Акционерное общество "Химстрой",

  • жилой дом оборудован пассажирскими лифтами грузоподъемностью = 400 кг.

  • мусоропроводом - асбоцементная труба d=400 мм.

  • фундамент - свайный с монолитным ростверком и сборными ж/б блоками,

  • стены - кирпичные,

  • перекрытия и покрытия - сборные железобетонные,

  • на 1-ом этаже предусмотрено проектирование парикмахерской, Бюро путешествий и магазина.

Объемно - планировочное решение

Общее положение

По мере развития типизации проектирования и индустриализации строительство жилых зданий приобрело огромные масштабы. Решается важнейшая задача социальной значимости - обеспечить каждую семью отдельной квартирой. При этом жилищное строительство осуществляется в комплексе с учреждениями повседневного культурно бытового обслуживания. Границей микрорайонов являются улицы. Поэтому при проектировании жилого дома предусматриваются широкие улицы, тротуары, обеспечивающие свободный проход людей, а также в случае пожара проезд пожарных машин. Для уменьшения проезда автомобилей внутри квартала, а следовательно и уменьшения загазованности атмосферы со стороны пр. Коммунистический и ул. Солнечной предусмотрены стоянки для личного автомобильного транспорта жителей микрорайона.

В целях экономии земельных участков города запроектирован 9-этажный жилой дом секционного типа. Данный дом расположен на основном пути перемещения жителей самого большого в городе микрорайона, а также стоящего на основной автомагистрали города, поэтому для удобства жителей в данном доме запроектирована парикмахерская, Бюро путешествий и магазин. Этот дом дополняет ансамбль въезда в город своим зеркальным отображением существующего на другой стороне улицы дома.

Для удобства передвижения людей предусмотрены проходы между секциями, которые также являются пожарными проездами. В проектируемом доме каждая квартира состоит из следующих помещений:

  • жилые комнаты,

  • кухня,

  • передняя (коридор),

  • ванная,

  • туалет,

  • лоджия.

Все жилые комнаты освещены естественным светом в соответствии с требованиями СНиП 1:5,4, комнаты в квартирах имеют отдельные входы, высота помещения - 2,5 м. Кухня оборудована вытяжной естественной вентиляцией, мойкой, электроплитой. Стены возле кухонного оборудования облицовывающая глазурованной плиткой, остальные - моющимися обоями. Пол в квартирах покрыт линолеумом по растворной стяжке. Ванна и туалет выполнены в железобетонной санитарной кабине.

Находясь в 1-й климатической зоне, тамбур выполнен двойным с утепленными входными дверьми и с установкой приборов отопления как в тамбуре, так и на лестничной клетке.

Лестничная клетка запланирована как внутренняя повседневной эксплуатации, из сборных железобетонных элементов. Во входном узле лестницы из отдельных бетонных наборных ступеней. Лестница двухмаршевая с опиранием на лестничные площадки. Уклон лестниц - 1:2. На лестничной клетке между 2 и 3 этажом предусмотрена комната для персонала с обивкой двери и дверной коробки оцинкованным железом по асботкани. С лестничной клетки имеется выход на кровлю по металлической лестнице, оборудованной огнестойкой дверью. Лестничная клетка имеет искусственное и естественное освещение через оконные проемы. Все двери по лестничной клетке и в тамбуре открываются в сторону выхода из здания. Ограждение лестниц выполняется из металлических звеньев, а поручень облицован пластмассой. Для вертикальных коммуникаций предусмотрена лифтовая сборная железобетонная шахта с монтажом лифтовой установки грузоподъемностью = 400 кг. Машинное отделение лифта помещается на кровле, что позволяет уменьшить длину ведущих канатов почти в три раза, упростить кинематическую схему лифта, уменьшить нагрузки на несущие конструкции здания, отказаться от устройства специального помещения для блоков. Таким образом стоимость лифта и эксплуатационные расходы значительно сокращаются. Однако такое верхнее расположение машинного отделения менее выгодно по аккустико - шумовым соображениям.

Архитектурно - конструктивное решение

В состав помещений многоэтажного жилого дома кроме основного элемента - квартир запроектированы встроенные помещения:

  • парикмахерская,

  • Бюро путешествий,

  • магазин.

Положительная сторона такого решения - это максимальное приближение к жилой зоне объектов соцкультбыта, что ведет к комфортности обслуживания населения, сокращает затраты на строительство, а также на одновременную сдачу и жилья и соцкультбыта. С другой стороны находящиеся в здании магазины, парикмахерские и другие встроенные помещения концентрируют людские потоки, автотранспорт; своей деятельностью повышают шумы и непроизвольно засоряют прилегающую территорию отходами своего производства.

Многоэтажные жилые дома являются основным типом жилища в городах нашей страны. Такие дома позволяют рационально использовать территорию, сокращают протяженность инженерных сетей, улиц, сооружений городского транспорта. Значительное увеличение плотности жилого фонда (количество жилой площади (м2), приходящейся на 1 га застраиваемой территории) при многоэтажной застройке дает ощутимый экономический эффект. Кроме того, их высотная композиция способствует созданию выразительного силуэта застройки. Правильный выбор этажности застройки определяет ее экономичность.

В домах с количеством этажей более пяти в связи с обязательным устройством лифтов и мусоропроводов увеличивается строительная стоимость 1 м2 жилой площади, а затем и эксплуатационные расходы по дому. В то же время применение в застройке только многоэтажных домов приводит к однообразию, потере масштабности и даже не позволяет достигнуть сверхвысокой плотности застройки, так как при увеличении этажности увеличиваются и санитарные разрывы между зданиями. Поэтому города целесообразно застраивать не только многоэтажными домами, но и домами средней этажности.

Фундаменты

Под жилой дом с встроенными помещениями запроектированы свайные фундаменты с L=7 м, по свайному основанию запроектирован монолитный армированный ростверк. По монолитному ростверку фундамент выполняется из сборных бетонных блоков (см. чертеж 3).

При устройстве свайных оснований под фундаменты:

  • повышается надежность работы фундаментов,

  • уменьшаются земляные работы,

  • уменьшается материалоемкость,

  • возможность работать в зимний период времени без боязни проморозки грунтового основания,

  • в случае заполнения подвала и замачиванием основания нет опасности посадок при последующей эксплуатации.

Отрицательной стороной свайного фундамента является трудоемкость при забивании свай.

Наружные стены

Наружные стены здания запроектированы из красного кирпича М-100 с утеплителем из жесткой минераловатной плиты и облицованные красным облицовочным кирпичом (см. схему 5).



Материал утепляющего слоя

кг/м2

1

м

Вт/м2 Со

R0пр

R0тр

м2Со/Вт

Минераловатные плиты

100



0,25



0,77



0,07



2,74

3,595



Расчет теплопроводности стены:



tН = - 40°C



n(tН - tВ) 1·(20-(- 40))

RO = ¾¾¾¾ = ¾¾¾¾¾¾ = 1,72 м2С°/Вт

DtНВ 4·8,7



ГСОП = (tВ - tОП)+ZОП = 20-(8,8) ·234 = 627,2



по ГСОП RЭС = 2,05



Параллельный поток



участок 1:



0,77

R = ¾¾ = 0,95

0,81



F = 0,12·1 = 0,12 м2



участок 2:



0,12 0,25 0,38

R = ¾¾ + ¾¾ + ¾¾ = 4,19

0,81 0,07 0,81



F = 1,05·1 = 1,05 м2



2 · F1l1 +F1l2 2·0,12+1,05

R = ¾¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾¾ = 2,56

FI FII 2· (0,12/0,85)+1,05/4,19

2· ¾ + ¾

RI RII



Перпендикулярный поток

участок 1



0,12

R = ¾¾ = 0,148

0,81

Для установления термического сопротивления слоя номер 2 предварительно вычисляем среднюю величину коэффициента теплопроводности с учетом площадей и утеплителя, выполненного из минераловатной плиты.

2· l1 · F1+ l2 · F2 2·0,81·0,12+0,07·1,05

СР = ¾¾¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾¾ = 0,228

2·F1 + F2 2·0,12+1,05



d 0,25

Тогда: R = ¾¾ = ¾¾¾ = 1,09

l СР 0,272



d 0,38

R = ¾ = ¾¾ = 0,469

l 0,81



RВ = R1 +R2 +R3 = 0,148+1,09+0,469 = 1,71



Rа+2·Rв 2,56+2·1,71

RС = ¾¾¾¾¾ = ¾¾¾¾¾¾ = 1,99

3 3



RЭС = 2,05 < Rо = 2,15



Принятые размеры толщины стены удовлетворяют требованиям теплотехнического расчета стены.

Здание выполнено из кирпичной кладки, выглядит массивно и капитально, придавая зданию тектоническую выразительность. Зданиям, выполненным из кирпича сравнительно легко придавать индивидуальность фасадов и внутренней планировки. Стены из кирпича с горизонтальными и вертикальными выступами нишами и прочими объемными элементами способствуют восприятию их трехмерности, и увеличивают степень долговечности и огнестойкости здания. Материал, из которого изготавливают кирпич сравнительно дешевый.

Основной недостаток кирпичной кладки стен - трудоемкость производства работ и долгий срок возведения объектов строительства.

Перекрытия и покрытия

Перекрытия и покрытия запроектированы из типовых сборных пустотных железобетонных плит с предварительным напряжением арматуры. Применение сборных плит перекрытий и покрытий увеличивает скорость возведения зданий. Кровля запроектирована из трехслойного гидроизоляционого ковра из рубероида и защитным 5 см слоем асфальтовой стяжки, что в 1,5 раза менее трудоемко, чем скатные чердачные крыши и на 10-15% дешевле их.

Расчет толщины утеплителя перекрытий и покрытий



а) жилой части здания:



Наименование


кг/м2

CО

S

R

Железобетонная плита перекрытия

2580

0,22

0,84

2,04

16,95

0,1078

Утеплитель - керамзит


800

0,32

0,84

0,23

3,60

1,4

Цементно - песчаная стяжка

1800

0,05

0,84

0,93

11,09

0,053



n(tН - tВ) 0,9·(20-(- 40))

RO = ¾¾¾¾ = ¾¾¾¾¾¾¾ = 1,55 м2С°/Вт

DtНВ 4·8,7



d

Rn = ¾

l



1 1 1 d 1

Ro = ¾ + Rк + ¾ = ¾ + 0,1078 + ¾¾ + 0,053 + ¾

aВ aН 8,7 0,23 23



d1 d2 d3 0,22 d2 0,053

Rк = R1 + R2 + R3 = ¾ + ¾ + ¾ = ¾¾¾ + ¾¾ + ¾¾¾

l1 l2 l3 2,04 0,23 0,93



d2 = (Ro-Rв-R1 -R3 ) · aН



d2 = (1,55-0,1149-0,1078-0,05376-0,04347) · 0,23=0.322 м



RО ³ RОТР



1 1 1 0,32 1

Ro = ¾ + Rк + ¾ = ¾¾ + 0,1078 + ¾¾ + 0,053 + ¾

aВ aН 8,7 0,23 23



Ro = 1,55 ³ Ro = 1,55, где:

p - плотность материала утеплителя (кг/м3)

a - коэффициент теплопроводности (Вт/мС°)

d - толщина слоя (м)

n - коэффициент, применяемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху

tВ - расчетная температура внутреннего воздуха (°С)

tН - расчетная температура наружного воздуха (°С)

DtН - нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции.

aВ - коэффициент теплопередачи внутренней поверхности

RК - термическое сопротивление ограждающей конструкции



Толщина утеплителя составляет 32 см.

б) встроенные помещения:



Наименование


CО

S

R

Железобетонная плита перекрытия

2580

0,22

0,84

2,04

16,95

0,1078

Пароизоляция 1 слой рубероида

600

0,01

1,68

0,17

3,53

0,

Утеплитель - керамзит


800

0,32

0,84

0,23

3,60

1,4

Цементно - песчаная стяжка

1800

0,05

0,84

0,93

11,09

0,053

Асфальт 5 см


2100

0,05

1,68

1,05

16,43

0,0476



n(tН - tВ) 1·(20-(- 40))

RO = ¾¾¾¾ = ¾¾¾¾¾¾ = 1,72 м2С°/Вт

DtНВ 4·8,7



d

Rn = ¾ ; RО ³ RОТР

l



1 1 1 d 1

Ro = ¾ + Rк + ¾ = ¾¾ + 0,3894 + ¾¾ + ¾

lВ lН 8,7 0,23 23



d1 d2 d3 d4

Rк = R1 + R2 + R3 + R4 = ¾ + ¾ + ¾ + ¾

l1 l2 l3 l4



d2 = (Ro -Rв -R1 -R3 -R4) · l2 = (1,72-0,1149-0,3314-0,04347) · 0,23=0.28



Толщина утеплителя составляет 28 см.

Перегородки

Перегородки применяются сборными из гипсобетона толщиной 8 см, изготавливаемых на заводах поставщика. Применение сборных перегородок ускоряет процесс строительства и уменьшает мокрые процессы на строительной площадке. Но гипсовые перегородки довольно хрупкие и во время транспортировки, хранении и монтаже могут разрушится из-за неумелого обращения.

Окна и витражи - витрины

Окна и витражи витрины в значительной мере определяют степень комфорта в здании и его архитектурно - художественное решение. Окна и витражи подобраны по ГОСТ-у, в соответствии с площадями освещаемых помещений. Верх окон максимально приближен к потолку, что обеспечивает лучшую освещенность в глубине комнаты. Основы витражей т.е. коробки и переплеты выполняются из алюминия, что в 2,5 - 3 раза легче стальных, они коррозийностойкие и декоративные. Деревянные конструкции окон чувствительны к изменению влажности воздуха и подвержены гниению, в связи с чем их необходимо периодически окрашивать.

Двери

В данном дипломном проекте размеры дверей приняты по ГОСТ-у двери, как внутренние внутри квартир, кабинетах так и наружные усиленные. Двери применены как однопольные, так и двупольные, размером: 2,1 м высотой и 0,9; 0,8; 0,7 м шириной. Для обеспечения быстрой эвакуации все двери открываются наружу по направлению движения на улицу исходя из условий эвакуации людей из здания при пожаре. Дверные коробки закреплены в проемах к антисептированым деревянным пробкам, закладываемым в кладку во время кладки стен. Для наружных деревянных дверей и на лестничных клетках в тамбуре - коробки устраивают с порогами, а для внутренних дверей - без порога. Дверные полотна навешивают на петлях (навесах), позволяющих снимать открытые настежь дверные полотна с петель - для ремонта или замены полотна двери. Во избежание нахождения двери в открытом состоянии или хлопанья устанавливают специальные пружинные устройства, которые держат дверь в закрытом состоянии и плавно возвращают дверь в закрытое состояние без удара. Двери оборудуются ручками, защелками и врезными замками. Входные тамбурные двери в парикмахерской, Бюро путешествий, магазине выполнены из двухслойного штампованного алюминия рифленой поверхности. Коробки дверей выполняются из штампованных алюминиевых профилей с креплением анкерами к стенам.

Полы

Полы в жилых и общественных зданиях должны удовлетворять требованиям прочности, сопротивляемости износу, достаточной эластичности, бесшумности, удобства уборки. Конструкция пола рассмотрена как звукоизолирующая способность перекрытия плюс звукоизоляция конструкции пола. Покрытие пола в квартирах принято из линолеума на теплоизолирующем основании. Стяжка выполняется из раствора по керамзитовой засыпке, являющейся звукоизоляционным слоем. Во встроенных помещениях приняты мозаичные полы.

Положительными сторонами данных полов является их гигиеничность и бесшумность. Отрицательные стороны - большая трудоемкость, что также увеличивает срок строительства.

Отделка

Наружная отделка: цокольная часть из рельефных цокольных блоков заводского изготовления. Отделка стен - из облицовочного красного кирпича. Оконные и дверные блоки окрашиваются масляными красками или эмалями теплых тонов.

Внутренняя отделка: в квартирах стены обклеиваются обоями после штукатурки кирпичных стен. Кухни обклеиваются моющимися обоями, а участки стен над санитарными приборами облицовываются глазурованной плиткой. В санкабинах полы из керамической плитки. Стены белятся мелпастой и устраивается панель из окраски масляными или эмалевыми красками. Встроенные помещения отделываются согласно таблицы.

Отопление

Отопление и горячее водоснабжение запроектировано из магистральных тепловых сетей от УТ-1, с нижней разводкой по подвалу. Приборами отопления служат конвектора. На каждый блок - секцию и каждый встроенный блок выполняется отдельный тепловой узел для регулирования и учета теплоносителя. Магистральные трубопроводы и трубы стояков, расположенные в подвальной части здания изолируются и покрываются алюминиевой фольгой.

Водоснабжение

Холодное водоснабжение запроектировано от внутриквартального коллектора водоснабжения с двумя вводами. Вода на каждую секцию подается по внутридомовому магистральному трубопроводу, расположенного в подвальной части здания, который изолируется и покрывается алюминиевой фольгой. На каждую блок - секцию и встроенный блок устанавливается рамка ввода.

Вокруг дома выполняется магистральный пожарный хозяйственно - питьевой водопровод с колодцами, в которых установлены пожарные гидранты.

Канализация

Канализация выполняется внутридворовая с врезкой в колодцы внутриквартальной канализации. Из каждой секции и каждого встроенного помещения выполняются самостоятельные выпуска хозфекальной и дождевой канализации.

Энергоснабжение

Энергоснабжение выполняется от городской подстанции с запиткой по две секции двумя кабелями - основной и запасной. Встроенные помещения запитываются отдельно, через свои электрощитовые. Все электрощитовые расположены на первых этажах.

Радио

На каждой секции устанавливаются радиостойки с устройством радиофидеров от соседних домов, расположенных вокруг строящихся зданий. В каждой квартире имеются две радиоточки - на кухне и в зале, а также в кабинетах встроенных помещений.

Телевидение

На всех блок - секциях монтируются телевизионные антенны, с их ориентацией на телецентр и установкой усилителя телевизионного сигнала. Все квартиры подключаются к антенне коллективного пользования.

Телефонизация

К каждой блок - секции дома и встроенным блокам из внутриквартальной телефонной сети подводится телефонный кабель и в зависимости от возможности городской телефонной станции осуществляется абонентов к городской телефонной сети.

Мусоропровод

Мусоропровод внизу оканчивается в мусорокамере бункером - накопителем. Накопленный мусор в бункере высыпается в мусорные тележки и погружается в мусоросборные машины и вывозится на городскую свалку отходов. Стены мусорокамеры облицовываются глазурованной плиткой, пол металлический. В мусорокамере предусмотрены холодный и горячий водопровод со смесителем для промывки мусоропровода, оборудования и помещения мусорокамеры. Мусорокамера оборудована трапом со сливом воды в хозфекальную канализацию. В полу предусмотрен змеевик отопления. В верху мусоропровод имеет выход на кровлю для проветривания мусорокамеры и через мусороприемные клапана удаление застоявшегося воздуха из лестничных клеток, а также дыма в случае пожара. Вход в мусорокамеру отдельный, со стороны улицы.

Технико - экономические показатели

Экономические показатели жилых зданий определяется их объемно планировочными и конструктивными решениями, характером и организацией санитарно - технического оборудования. Важную роль играет запроектированное в квартире соотношение жилой и подсобной площадей, высота помещения, расположение санитарных узлов и кухонного оборудования. Проекты жилых зданий характеризуют следующие показатели:

  • строительный объем (м куб.) (в т.ч. подземной части),

  • площадь застройки (м2),

  • общая площадь (м2),

  • жилая площадь (м2),

  • площадь летних помещений (м2),



К - отношение жилой площади к общей площади, характеризует рациональность использования площадей.

К - отношение строительного объема к общей площади, характеризует рациональность использования объема.

Строительный объем надземной части жилого дома с неотапливаемым чердаком определяют как произведение площади горизонтального сечения на уровень первого этажа выше цоколя (по внешним граням стен) на высоту, измеренную от уровня пола первого этажа до верхней площади теплоизоляционного слоя чердачного перекрытия.

Строительный объем подземной части здания определяют как произведение площади горизонтального сечения по внешнему обводу здания на уровне первого этажа, на уровне выше цоколя, на высоту от пола подвала до пола первого этажа.

Строительный объем тамбуров, лоджий, размещаемых в габаритах здания, включается в общий объем.

Общий объем здания с подвалом определяется суммой объемов его подземной и надземной частей.

Площадь застройки рассчитывают как площадь горизонтального сечения здания на уровне цоколя, включая все выступающие части и имеющие покрытия (крыльцо, веранды, террасы).

Жилую площадь квартиры определяют как сумму площадей жилых комнат плюс площадь кухни свыше 8-ми м2.

Общую площадь квартир рассчитывают как сумму площадей жилых и подсобных помещений, квартир, веранд, встроенных шкафов, лоджий, балконов, и террас, подсчитываемую с понижающими коэффициентами:

  • для лоджий - 0,5,

  • для балконов и террас - 0,3.

Площадь помещений измеряют между поверхностями стен и перегородок в уровне пола. Площадь всего жилого здания определяют как сумму площадей этажей, измеренных в пределах внутренних поверхностей наружных стен, включая балкон и лоджии. Площадь лестничных клеток и различных шахт также входит в площадь этажа. Площадь этажа и хозяйственного подполья в площадь здания не включается (см. схему ).

Технико - экономические показатели

Жилой дом:

Наименование

Показатель

V стр. подз. [м3]

9840

V стр. надз. [м3]

177123,2

V общ. [м3]

186963,2

S подв. [м2]

3644

S жил. [м2]

25024,7

S общ. [м2]

41224

S застр. [м2]

7626,4

S здан. [м2]

46321,5

K1 = S жил./ S жил.

0,603

K2 = V стр./S жил. [м32]

4,530





Встроенные помещения:

Наименование

Показатель

V стр. [м3]

16390,44

S общ. [м2]

5007,84

S пол. [м2]

2343,72

S всп. [м2]

6684,4

S раб. [м2]

1504,26

S норм. [м2]

2072,4

S заст. [м2]

2432,4

K1 = Sнор./ Sобщ.

0,413

K2 = Vстр./Sобщ. [м32]

3,27



Генеральный план:

Наименование

Показатель

S озел. [м2]

13449

S заст. [м2]

10058

S дор. [м2]

6568

S уч. [м2]

30076

K заст.

0,334

K озел.

0,447



Генеральный план

Жилой дом располагается в 11-м микрорайоне г Северска, главным фасадом выходит на проспект Коммунистический и на улицу Солнечная. С проспекта Коммунистического запроектированы площадки для стоянки автомобилей, для того, чтобы уменьшить поток автотранспорта в жилой квартал. Дом запроектирован в меридиональном направлении, что обеспечивает меньшее продувание холодными ветрами дворовой части и улучшает микроклимат квартала. Между домом и площадками для стоянки автомобилей запроектированы посадки деревьев и кустарников, что является шумопоглощением и улучшает экологическое равновесие воздушной среды. В жилом доме запроектированы встроенные помещения:

  • парикмахерская,

  • Бюро путешествий,

  • магазин.



Вдоль главного фасада запроектированы широкие тротуарные дорожки, которые в случае пожара используются как подъездные пути для пожарных машин. Вдоль тротуара запроектированы фонари. Автодороги освещаются мачтами, с укрепленными на них светильниками. Между домами предусмотрены проезды для прохода и проезда людей.

Список использованной литературы

  1. "Архитектурное проектирование" М.И. Тусунова М.М. Гаврилова И.В. Полещук

  2. "Конструкции гражданских зданий" М.С. Туполев

  3. "Конструирование гражданских зданий" И.А. Шерешевский

  4. "Архитектура гражданских и промышленных зданий" том II - "Основы проектирования"

  5. СНиП - II-3-79 "Нормы проектирования. Строительная теплотехника"



Основания и фундаменты

Введение

Основным направлением экономического и социального развития города предполагается значительное увеличение объемов капитального строительства, так как возведение жилых зданий сопровождается сооружением общественных зданий, школ, предприятий общественного питания и бытового обслуживания. Уменьшение затрат на устройство оснований и фундаментов от общей стоимости зданий и сооружений, может дать значительную экономию материальных средств. Однако, добиваться снижения этих затрат необходимо без снижения надежности, т.е. следует избегать возведения недолговечных и некачественных фундаментов, которые могут послужить причиной частичного или полного разрушений зданий и сооружений. Необходимая надежность оснований и фундаментов, уменьшения стоимости строительных работ в условиях современного градостроительства зависит от правильной оценки физико - механических свойств грунтов, слагающих основания, учета его совместной работы с фундаментами и другими надземными строительными конструкциями. Проектирование свайных фундаментов разрабатывается на основе материалов инженерно - геологических изысканий.

В данном проекте рассчитываем висячие сваи - это такие сваи, у которых под нижними концами залегают сжимаемые грунты и нагрузка передается, как через нижний конец, так и по боковой поверхности сваи. Длина сваи назначается с учетом глубины заложения подошвы ростверка. Она должна быть не менее 0,3м при действии центрально - сжимающей нагрузки. Геометрические размеры ростверка в плане зависят от размеров опирающихся на него конструкций, и от количества свай в свайном фундаменте. Расстояние между осями забивных висячих свай должно быть не менее 3d (d-сторона квадратного поперечного сечения сваи).

Положительные стороны свайного фундамента:

  • повышенная надежность работы фундаментов,

  • уменьшаются земляные работы,

  • уменьшается материалоемкость,



Отрицательные - трудоемкость при забивании свай.

Краткая характеристика проектируемого здания.

Данное жилое здание имеет сложную конфигурацию в плане. Девятиэтажный 744-квартирный жилой дом имеет встроенные помещения:



  • парикмахерская,

  • Бюро путешествий,

  • магазин.



Жилой дом расположен в центре города, главным фасадом выходит на главный проспект города - пр. Коммунистический и улицу Солнечная. Площадка строительства попадает на территорию, застроенную ранее частными домами. Запроектированы следующие конструкции:



  • фундамент свайный, с монолитным ростверком и сборными железобетонными блоками,

  • перекрытия и покрытия - сборные железобетонные,

  • жилой дом оборудован пассажирским лифтом, грузоподъемностью 400 кг.

Инженерно- геологические условия строительной площадки

Исследуемую площадку пересекает ряд инженерных коммуникаций: водопровод, канализация, теплотрассы. Поверхность участка сравнительно ровная, с общим понижением рельефа в южном и юго-восточном направлении. Абсолютные отметки поверхности изменяются в пределах от 86,3 м до 92,85 м. Максимальная разность отметок в целом по участку составляет 6,55 м.

Геологический разрез участка был составлен на основе инженерно- геологических изысканий, которые были сделаны по скважине N 1.

  • Слой_I - современные образования представлены преимущественно почвенным слоем. Насыпной грунт мощностью 0,5 м. По составу насыпной грунт неоднородный, сложен преимущественно песком, реже суглинком с примесью почвы гравия. Среднее содержание примесей - 10%. По степени уплотнения от собственного веса - смешавшийся.

  • Слой_II - слагает верхнюю часть разреза верхнечетвертичных аллювиальных отложений от подошвы слоя I, сложен преимущественно песком коричневым пылевитым, реже средней крупности; средней плотности, от маловлажного до водонасыщенного состояния с прослойками и линзами суглинка. Мощность слоя 1,3 м.

  • Слой_III- слагает верхнюю часть разреза от подошвы слоя II до глубины 2,5 м. Слой представлен коричневым суглинком, является тугопластичным.

  • Слой_IV - представлен коричневым пылевитым песком, плотный, влажный. Мощность слоя составляет 3,4 м. На глубине 4,5 м находится прослойка суглинка. В этом слое проходит уровень подземных вод на глубине 5,4 м от поверхности.

  • Слой_V - слагает среднюю часть разреза от подошвы слоя IV до глубины 6,7 м. Слой представлен коричневым суглинком, текучим. Мощность слоя 0,8 м.

  • Слой_VI- Слагает нижнюю часть митологического разреза верхнечетвертичных аллювиальных отложений от подошвы слоя V до конечной глубины скважины (15-20м). Слой представлен песком коричневым, преимущественно пылевитым, маловлажный; с редкими прослойками и мизалями суглинка на глубине 7,5 м. Физико - механические свойства грунтов площадки строительства приведены в таблице.



Сводная таблица расчётных значений физико - механических характеристик грунтов



Наименование

Мощ-

Плотность

Удельный вес

Показатели

Показатели

Коэфф.

степень

Угол вн.

Сцеп-

Модуль

грунта

ность




частиц

грунта

сухого

текучести

текучести

порист.

влажн.

трения

ление

деформ


слоя

rs

r

rd

gs

g

грунта gd

Wp

WL

Ip

IL

e

Sr

j

C

E

Песок

1,7

2,69

1,86

1,65

26,9

18,6

16,5

-

-

-

-

0,63

0,56

33

0,01

21,5

Суглинок

2,5

2,71

2,04

1,76

27,1

20,4

17,6

21

13

8

0,38

0,54

0,8

24

0,022

6

Песок

5,9

2,66

1,9

1,7

26,6

19

17

-

-

-

-

0,565

0,56

33

0,01

6

Суглинок

6,7

2,74

2,06

1,73

27,4

20,6

17,3

21

13

8

0,38

0,58

0,8

21

0,021

18

Песок

15

2,68

1,82

1,64

26,8

18,2

16,4

-

-

-

-

0,634

0,46

33

0,01

21,7



Сбор нагрузок на фундамент крайней стены

Для дальнейшего расчета фундамента необходимо определить нагрузки.

Постоянные нормативные нагрузки:

Покрытия

Чердачные перекрытия с утеплителем

Межэтажные перекрытия

Перегородки

Вес парапета

Кирпичная кладка

Вес плиты лоджии

2,54 кН/м2

3,80 кН/м2

3,60 кН/м2

1,00 кН/м2

1,00 кН/м2

18,00 кН/м2

10,60 кН/м2



Временные нормативные нагрузки:



На 1 м2 проекции кровли от снега

На 1 м2 проекции чердачного перекрытия

На 1 м2 проекции межэтажного перекрытия

1,50 кН/м2

0,75 кН/м2

1,50 кН/м2



Определим нагрузку на наружную систему. Грузовая площадь между осями оконных проемов:



А = 3,125·3=9.375 м2, где:



3,125 - расстояние между осями,

3 - половина расстояния в частоте между стенами.



Нормативные нагрузки на 3,125 м длины фундамента на уровне спланированной отметки земли (кН):



Постоянные нагрузки от конструкции:



Покрытия

2,54 · 9,375

23,8125кН

Чердачного перекрытия

3,8·9,375

35,625 кН

9-ти межэтажных перекрытий



9·3,6 · 9,375



303,75 кН

Перегородок на 9-ти этажах



9 · 1 · 9,375



84,375 кН

Карстена выше чердачного перекрытия:



0,77 · 1,5 · 6,3 · 1,8 · 3,125



40,93 кН

Стена со 2-го этажа и выше на длине 3,125 м за вычетом оконных проемов





0,77· (3,125·2,8-1,484·1,35) ·1,8·10·8





748,06 кН

Вес системы 1-го этажа

0,77· (3,125·2,8)-1,8·10

121,275 кН

Вес от перекрытий подвала



3,125·3,6·6,6·1



74,25 кН

Вес от покрытий парикмахерской



3,125·3,45·6,1·1



65,76 кН

Вес от лоджий

8·10,6

84,8 кН


Итого:

1582,646кН



Временные нагрузки



На кровлю от снега

1,5 · 9,375

14,06 кН

Чердачные перекрытия

9,375 · 0,75

7,031 кН

На 9-ти межэтажных перекрытиях с коэффициентом jn1 = 0,489



9,375 · 10 · 0,489 · 1,5



68,864 кН



Неодновременное загружение 6-ти этажей учитываем снижающим коэффициентом по формуле:



jn1 = 0,3+0,6/Ön, где:



n - число перекрытий, от которых нагрузка передается на основание.



jn1 = 0,3+0,6/Ö9 = 0,4897



Итого: 89,9575 кН



Условия несущей способности грунтов основания одиночной сваи или в составе свайного фундамента имеет вид:



Fd

N £ ¾ , где:

¡K



N - расчетная нагрузка, передаваемая от сооружения на одиночную сваю,

Fd - несущая способность сваи по грунту,

¡K - коэффициент надежности, назначаемый в зависимости от метода определения несущей способности сваи по грунту.

Подберем длину забивной сваи и определим ее несущую способность по грунту.

Из анализа грунтовых напластований можно сделать вывод, что пластичная глина не обладает достаточным сопротивлением, а слой супеси имеет малую толщину. В качестве несущего слоя целесообразно принять слой "пылевитый песок". Тогда длина забивной сваи, с учетом заглубления в несущий слой не менее 1 м, составляет L = 0,3+2,6+0,8+4,3+1 = 9 м. Принимаем забивную сваю типа С10-30 по ГОСТ 19804.1-79 длиной 10 м, сечением 30 х 30 см, свая при этом будет висячей. Погружение сваи будет осуществляться дизельным молотом. Несущая способность висячей забивной сваи определяется в соответствии со СНиП 2.02.03-85 как сумма сил расчетных сопротивлений грунтов оснований под нижним концом сваи и на ее боковой поверхности по формуле:



Fd = ¡C · (¡CR·R·A+U·å ¡CF · fi · hi ), где



¡C - коэффициент работы сваи в грунте, принимаемый равным 1,

¡CR, ¡CF - коэффициенты условий работы соответственно под нижним концом и на боковой поверхности сваи, принимаемые для забивных свай, погружаемых дизельными молотами без лидирующих скважин, равными 1,

A - площадь опирания сваи на грунту, принимаемая равной площади поперечного сечения сваи. A = 0,3·0,3 = 0.09 м2

U - наружный периметр поперечного сечения сваи 0,3·4=1.2 м,

R - расчетное сопротивление грунта под нижним концом сваи.



Расчетное сопротивление грунта зависит от вида и состояния грунта и от глубины погружения сваи.



1650 - 1500

R = 1500 + ¾¾¾¾¾¾ · (13 - 10) = 1590 [кПа]

15 -10



fi - расчетное сопротивление i-го слоя грунта, соприкасающегося с боковой поверхностью, кПа.



f1 = 27кПа, f2 = 29,4кПа, f3 = 31,3кПа, f4 = 32,1кПа, f5 = 33,05кПа, f6 = 34,28 кПа



hi - толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м



h1 = 3,9 м, h2 = 5,2 м, h3 = 6,3 м, h4 = 7,1 м, h5 = 8,1 м, h6 = 10,35 м



Подставляем полученные значения в формулу и определяем несущую способность сваи С10-30 по грунту.



Fd = 1·(1·1590·0,09+1,2·(27·3,9+29,4·5,2+31,3·6,3+32,1·7,1+33,05·8,1+34,28·10,35))



Fd = 1710,0396 кПа



Определение количества свай в свайном фундаменте

Расчетную глубину промерзания грунта определяется по формуле:

df = Kn · dfn и зависит от теплового режима здания, от наличия подвала, конструкции пола .



dfn - нормативная глубина промерзания грунта, dfn = 2,2 м,

Kn - коэффициент, учитывающий влияние теплового режима здания, принимаемый равным 0,6.

тогда df = 2,2 · 0,6 = 1,32 м

Количество свай С10-30 под стену здания можно определить по формуле:



Fi · gK 1,4 · 1672,6

n = ¾¾¾ = ¾¾¾¾¾¾ = 1,4 св., принимаем 2 сваи.

Fd 1710,0396



Расстояние между сваями (шаг свай) вычисляется по формуле:



mp · Fd 2 · 1710,039

a = ¾¾¾¾ = ¾¾¾¾¾¾ = 1,34 м

Fd 1,4 · 1672,6



mp - число рядов свай

Расстояние между рядами свай равно 1,1 м.

Ширина ростверка в этом случае будет равна 1,5 м.

















Собственный вес одного погонного метра ростверка определяется по формуле: GIP = b · hp · gb · gf, где



b, hp - соответственно ширина и толщина ростверка, м

gb - удельный вес железобетона, принимаемый gb = 24 кН/м3

gf - коэффициент надежности по нагрузке, принимаемый gf = 1,1



Подставим в формулу соответствующие значения и величины:



GIP = 1,5 · 0,6 · 1,1 · 24 = 23,76 кН/м



Собственный вес группы на уступах ростверка может быть определена по формуле: GIГР = (b - bc) · h · gI· gf, где:



bc - ширина цокольной части

h - средняя высота грунта на уступах ростверка, h = 1,25 м

gI‘ - удельный вес грунта обратной засыпки, принимаемый равным gI‘= 17 кН/м3

gf - коэффициент надежности по нагрузке для насыпных грунтов gf = 1,15



GIГР = (1,5 - 0,73) · 1,25 · 17 · 1,15 = 18,81 кН/м



Расчетная нагрузка в плоскости подошвы ростверка:

å FI = FI’ + GIР +GIГР = 1672,6 + 23,76 + 18,81 = 1715,17 кН/м



Фактическую нагрузку, передаваемую на каждую сваю ленточного фундамента, определяем по формуле:



a · å FI 1,4 · 1715,17

N = ¾¾¾¾ = ¾¾¾¾¾¾ = 1200,619 кН

mP 2



Проверим выполнение условия несущей способности грунта в основании сваи:



Fd 1710,0396

N £ ¾ 1200,69 £ ¾¾¾¾¾ = 1221,46

gK 1,4



Расчет осадки свайного фундамента

Осадка ленточных фундаментов с двухрядным расположением свай и расстоянием между сваями (3 - 4 d) определяется по формуле:



n · (1- n2)

S = ¾¾¾¾¾ · d0, где:

p · E



n - полная нагрузка на ленточный свайный фундамент (кН/м) с учетом веса условного фундамента в виде массива грунта со сваями, ограниченного: сверху- поверхностью планировки, с боков - вертикальными плоскостями, проходящими по наружным граням крайних рядов свай, снизу - плоскостью, проходящей через нижние концы свай.

E, n - модуль деформации (кПа) и коэффициент Пуассона грунта в пределах снимаемой толщи.

d0 - коэффициент, определяемый по номограмме СНиП 2.02.03 - 85.

Полная нагрузка n складывается из расчетной нагрузки, действующей в уровне планировочной отметки, и собственного веса условного ленточного фундамента.

FII’ = 535,23 - 0,73 · 1,1 · 2,4 = 533,3 кН/м, тогда полная нагрузка n равна:



n = FII’ + b · d · g, где:



b - ширина фундамента, равна 1,4 м

d - глубина заложения фундамента от уровня планировочной отметки, равна 13м

g - среднее значение удельного веса свайного массива, g = 20кН/м3



n = 533,3 + 1,4 · 13 · 20 = 897,3 кН/м



Для определения коэффициента d0 необходимо знать глубину снимаемой толщи HC, которая в свою очередь, зависит от значения дополнительных напряжений, развивающихся в массиве грунта под фундаментом.

Дополнительные напряжения определяются по формуле:



n

s = ¾¾¾ · an, где:

p · h



n - полная нагрузка на ленточный свайный фундамент, кН/м

h - глубина погружения свай, м

an - безразмерный коэффициент, зависит от приведенной ширины b = b/h и приведенной глубины рассматриваемой точки z/h, где z - фактическая глубина рассматриваемого слоя грунта от уровня планировки



b = 1,4/10 = 0,14



Вычисленные значения дополнительных напряжений сведем в табл. № 1

Природные напряжения от действия собственного веса грунта определяются по формуле:

n

szg = å giII · hi, где:

i=1



giII - удельный вес i - го слоя,

hi - толщина i - го слоя.



Природные напряжения в уровне подошвы условного фундамента будут равны:



szdyg = 10,03 · 1,7 + 10,74 · 0,8 + 10,24 · 3,4 + 10,66 · 0,8 + 9,95 · 6,3 = 131,672



Для дальнейшего расчета осадки необходимо знать удельный вес грунта твердых частиц



gS = grS, где



g - ускорение свободного падения, g = 9,8 м/с2

rS - плотность грунта твердых частиц.

gS1 = 26,36 gS2 = 26,55 gS3 = 26,068 gS4 = 26,85 gS5 = 26,26



gS · gw

gSB = ¾¾¾¾ , где

1+e



gS - удельный вес твердых частиц

gw - удельный вес воды

e - коэффициент пористости

gSb1 = 10,03 gSb2 = 10,74 gSb3 = 10,26 gSb4 = 10,66 gSb5 = 9,95



n

szg = å giII · hi sgz1

i=1



sgz1 = szdyg + g1 · h1 = 131,672 + 10 · 0,31 = 134,1245 кПа

szg2 = szg1 + g2 · h2 = 134,1245 + 10 · 0,38 = 137,9055 кПа

szg3 = szg1 + g3 · h3 = 137,9055 + 10 · 0,766= 145,567 кПа и так далее...



Аналогично рассчитываются другие значения и сводятся в табл. 1. Ориентировочно, глубину снимаемой толщи HC можно определить из условия:

szp £ 0,2 · szg.



Анализ табл. 1 показывает, что это условие выполняется примерно на относительной глубине z/h = 1,9. Тогда HC= 1,9 · 9,7 = 18,43 м

Z- глубина от подошвы фундамента, м



Коэффициент Пуассона для песка, n = 0,3. Пользуясь номограммой при HC/h = 1,9 м и b = 0,14 находим d0 = 2,15. Осадка фундамента будет равна:



n · (1- n2) 897,3 · (1 - 0,32)

S = ¾¾¾¾¾ · d0 = ¾¾¾¾¾¾¾ · 2,15 = 0,025 м = 2,5 см.

p · E 3,14 · 21700



Средняя осадка для многоэтажных бескаркасных зданий с несущими кирпичными стенами не должна превышать 10 см. Следовательно, условия

S £ SU выполняется S = 2,5 см £ SU = 10 см.



Таблица 1



Z/h

an

szp [кПа]

Z [м]

szq [кПа]

0,2 · szq[кПа]

1,01

8,3858

246,87

0,08

131,672

26,208

1,05

6,5894

193,84

0,39

134,1245

26,824

1,1

5,02116

147,8

0,77

137,9055

27,581

1,2

3,4265

100,94

1,54

145,567

29,1137

1,3

2,67217

78,65

2,31

153,2285

30,6457

1,4

2,23026

65,7

3,08

160,89

32,178

1,5

1,9357

57,02

3,85

168,5515

33,71

1,6

1,72092

50,69

4,62

176,213

35,2426

1,7

1,5566

45,85

5,39

183,874

36,7749

1,8

1,42544

41,99

6,16

191,536

38,3072

1,9

1,31756

38,81

6,93

199,1975

39,839

2,0

1,22684

36,11

7,7

206,859

41,3718

2,1

1,14922

33,84

8,47

214,5205

42,904

2,2

1,0818

31,86

9,24

222,182

44,436

2,3

1,0225

30,12

10,01

229,8435

45,96

2,4

0,9699

28,57

10,78

237,505

47,5

2,5

0,9229

27,189

11,55

245,1665

49,03



Подбор молота для погружения свай

От правильности выбора дизель - молота зависит успешное погружение свай в проектное положение. В первом приближении дизель - молот можно подобрать по отношению веса его ударной части к весу сваи, которое должно быть для штанговых дизель - молотов 1,25 при грунтах средней плотности.

Минимальная энергия удара, необходимая для погружения свай определяется по формуле:



E = 1,75 · a · FV, где:



а - коэффициент, равный 25 Дж/кН,

FV - расчетная нагрузка, допускаемая на сваю, кН.

E = 1,75 · 25 · 535,23 = 23416,31 Дж

Пользуясь техническими характеристиками дизель - молотов подбирают такой молот, энергия удара которого соответствует минимальной. Возьмем трубчатый дизель - молот Ф - 859 с энергией удара 27 кДж. Полный вес молота Gh = 36500 Н, вес ударной части Gb = 18000 Н, вес сваи С10 - 30 равен 22800 Н. Вес наголовника принимаем равным 2000 Н. расчетная энергия удара дизель - молота Ф - 859:



ЕР = 0,4 · Gh· hm, где:



Gh’ - вес ударной части молота

hm - высота падения ударной части молота, hm = 2 м.



ЕР = 0,4 · 2 · 18000 = 14400 Дж.



Проверим пригодность принятого молота по условию:



Gh + Gb

¾¾¾¾ £ KM, где:

EP



Gh - полный вес молота

Gb - вес сваи и наголовника

KM - коэффициент, принимаемый при использовании ж/б свай равным 6.



(36500 + 22600 + 2000)

ЕР = ¾¾¾¾¾¾¾¾¾¾¾ = 4,24 < G

14400

Условие соблюдаются, значит принятый трубчатый дизель - молот Ф - 859 обеспечивает погружение сваи С10 - 30.

Определение проектного отказа свай

Проектный отказ необходим для контроля несущей способности свай в процессе производства работ. Если фактический отказ при испытании свай динамической нагрузкой окажется больше проектного, то несущая способность сваи может оказаться необеспеченной. Формула для определения проектного отказа имеет вид:

h · A · EP m1 + Î2 · (m2 + m3)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾ · ¾¾¾¾¾¾¾¾¾ , где:

gK · FI / m · (gK · FI / m + h · A) m1 + m2 + m3



h - коэффициент, применяемый для железобетонных свай h = 1500 кН/м2

A - площадь поперечного сечения ствола сваи, м

m - коэффициент, равный 1

gK - коэффициент надежности, принимаемый при определении несущей способности сваи по расчету gK = 1,4

EP - расчетная энергия удара [кДж]

FI - расчетная нагрузка, допускаемая на сваю, [кН]

m1 - масса молота, [т]

m2 - масса сваи и наголовника, [т]

m3 - масса подбабка, [т]

Î - коэффициент восстановления удара, принимаемый при забивке железобетонных свай Î2 = 0.2



1500·0,09·14,4 3,65+0,2·(18+0)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ · ¾¾¾¾¾¾¾ = 0,0021м = 2,1мм

(1,4·535,23)/1·(1,4·535,23/1+1500·0,09) 3,65+18+0



Сбор нагрузок на фундамент средней стены

Для дальнейшего расчета фундамента необходимо определить нагрузки.

Определение нагрузок на внутреннюю стену

Грузовая площадь - (3,15 + 3,1) · 1 = 6,3 м2 по длине здания - 1м, по ширине - половина расстояния чистоте между стенами в двух пролетах. Нагрузки на фундамент на уровне спланированной земли [кН/м2]:

Постоянные нагрузки от конструкции



Покрытия

Чердачные перекрытия с утеплителем

Межэтажные перекрытия

Перегородки

Кирпичная кладка

2,54 кН/м2

3,80 кН/м2

3,60 кН/м2

1,00 кН/м2

18,00 кН/м2



Временные нагрузки от конструкций:



Кровли от снега

Чердачные перекрытия

Межэтажные перекрытия

1,50 кН/м2

0,75 кН/м2

1,50 кН/м2



Постоянные нагрузки от конструкции:



Покрытия

2,54 · 6,3

16,002кН

Чердачного перекрытия

3,8 · 6,3

23,94 кН

9-ти межэтажных перекрытий



9 · 3,6 · 6,3



204,12 кН

Перегородок на 9-ти этажах



9 · 1 · 6,3



56,7 кН

Стены с 1-го этажа (объем дверных проемов примем 7,5% объема всей кладки)





0,51 · 18 · 1 · 0,925 · 29,80





253,046 кН


Итого

553,808кН



Временные нагрузки



На кровлю от снега

1,5 · 6,3

9,45 кН

Чердачные перекрытия

0,75 · 6,3

4,725 кН

На 9-ти межэтажных перекрытиях с коэффициентом jn1 = 0,4897



6,3 · 9 · 0,4897 · 1,5



41,6489 кН


Итого

55,8239



Условия несущей способности грунтов основания единичной сваи или в составе свайного фундамента имеет вид:



Fd

N £ ¾ , где:

¡K



Определим несущую способность сваи по грунту Fd:



Fd = ¡C · (¡CR·R·A+U·å ¡CF · fi · hi)



Fd = 1·(1·1590·0,09+1,2·(27·3,9+29,4·5,2+31,3·6,3+32,1·7,1+33,05·8,1+33,67·9,35))

Fd = 1645,014 кН



Несущая способность сваи по грунту достаточно высокая. Необходимо проверить, выдержит ли такую нагрузку свая по материалу. Расчет по прочности материала железобетонных свай должен производиться в соответствии с требованиями СНиП 2.03.01-84. При этом свая рассматривается как железобетонный стержень, жестко закрепленный в грунте. Несущая способность сваи может быть определена без учета продольного изгиба.



F = ¡ · (¡В · RВ · AВ + RS · AS), где



¡ - коэффициент условия работы, равен 1.

¡В - коэффициент условия работы бетона сваи, принимаемый для сваи сечением 30 х 30 см ¡В = 0,85.

AВ, AS - площади поперечного сечения соответственно бетона и продольной арматуры, м2

RВ, RS - расчетное сопротивление осевому сжатию соответственно бетона и продольной арматуры, кПа.



Свая С7-30 согласно ГОСТ 19804.1 - 79 изготавливается из бетона класса В15 с RВ = 8500кПа и армируется в продольном направлении четырьмя стержнями Æ12мм A - II с RS = 280000 кПа.

Несущая способность сваи С7-30 по материалу будет равна:



F = 1 · (0,85 · 8500 · 0,08954 + 0,00045 · 280000) = 773,54 кН



Как видно из сравнения, несущая способность сваи по материалу меньше, чем по грунту. Следовательно, в дальнейших расчетах свайного фундамента в данных грунтовых условиях за несущую способность сваи следует принимать значение по прочности материала, как наименьшее.

Определение количества свай в свайном фундаменте

В данных инженерно - геологических условиях при расположении уровня подземных вод на глубине 5,4 м, глубина заложения подошвы ростверка зависит от расчетной глубины промерзания грунта. Нормативная глубина промерзания грунта для г. Северска может быть принята dfn = 2,2 м. Расчетная глубина промерзания зависит от теплового режима здания, от наличия подвала, конструкции пола и определяется по формуле:



df = Kn · dfn, где:

dfn - нормативная глубина промерзания грунта, dfn = 2,2 м,

Kn - коэффициент, учитывающий влияние теплового режима здания, принимаемый равным 0,5.

тогда df = 2,2 · 0,6 = 1,1 м. Глубина заложения ростверка - 3,3 м, что больше расчетной глубины промерзания грунта.

Определим количество свай С7-30 под стену здания.



Fi · gK 1,4 · 609,6319

n = ¾¾¾ = ¾¾¾¾¾¾¾ = 1,1 св. Принимаем n = 2 сваи.

Fd 773,54



Расстояние между сваями (шаг свай) вычисляется по формуле:



mp · Fd 2 · 773,54

a = ¾¾¾¾ = ¾¾¾¾¾¾¾ = 1,3 м

Fd 1,4 · 609,6319



mp - число рядов свай



Ширина ростверка в этом случае будет равна 1,5 м.

Собственный вес одного погонного метра ростверка определяется по формуле: GIP = b · hp · gb · gf, где



b, hp - соответственно ширина и толщина ростверка, м

gb - удельный вес железобетона, принимаемый gb = 24 кН/м3

gf - коэффициент надежности по нагрузке, принимаемый gf = 1,1



Подставим в формулу соответствующие значения и величины:



GIP = 1,5 · 0,6 · 1,1 · 24 = 23,76 кН/м



Собственный вес группы на уступах ростверка может быть определена по формуле: GIГР = (b - bc) · h · gI· gf, где:



bc - ширина цокольной части

h - средняя высота грунта на уступах ростверка, h = 1,25 м

gI‘ - удельный вес грунта обратной засыпки, принимаемый равным gI‘= 17 кН/м3

gf - коэффициент надежности по нагрузке для насыпных грунтов gf = 1,15



GIГР = (1,5 - 0,73) · 1,25 · 17 · 1,15 = 18,81 кН/м



Расчетная нагрузка в плоскости подошвы ростверка:

å FI = FI’ + GIР +GIГР = 609,6319 + 23,76 + 18,81 = 672,2019 кН/м



Фактическую нагрузку, передаваемую на каждую сваю ленточного фундамента, определяем по формуле:



a · å FI 1,3 · 552,2019

N = ¾¾¾¾ = ¾¾¾¾¾¾¾ = 423,93 кН

mP 2



Проверим выполнение условия несущей способности грунта в основании сваи:



Fd

N £ ¾

gK



773,54

423,93 кН £ ¾¾¾¾ = 552,52

1,4



Расчет осадки свайного фундамента

Осадку ленточных с двухрядным расположением свай и расстоянием между сваями (3 - 4 d) определяется по формуле:



n · (1- n2)

S = ¾¾¾¾¾ · d0, где:

p · E



n - полная нагрузка на ленточный свайный фундамент (кН/м) с учетом веса условного фундамента в виде массива грунта со сваями, ограниченного: сверху- поверхностью планировки, с боков - вертикальными плоскостями, проходящими по наружным граням крайних рядов свай, снизу - плоскостью, проходящей через нижние концы свай.

E, n - модуль деформации (кПа) и коэффициент Пуассона грунта в пределах снимаемой толщи.

d0 - коэффициент, определяемый по номограмме СНиП 2.02.03 - 85.

Полная нагрузка n складывается из расчетной нагрузки, действующей в уровне планировочной отметки, и собственного веса условного ленточного фундамента.

FII’ = 609,6319 - 0,73 · 1,1 · 2,4 = 607,704 кН/м, тогда полная нагрузка n равна:

n = FII’ + b · d · g, где:



b - ширина фундамента, равна 1,4 м

d - глубина заложения фундамента от уровня планировочной отметки, равна 10м

g - среднее значение удельного веса свайного массива, g = 20кН/м3



n = 607,704 + 1,4 · 10 · 20 = 887,704 кН/м



Для определения коэффициента d0 (определяется по номограмме) необходимо знать глубину снимаемой толщи HC, которая в свою очередь, зависит от значения дополнительных напряжений, развивающихся в массиве грунта под фундаментом.

Дополнительные напряжения определяются по формуле:



n

s = ¾¾¾ · an, где:

p · h



n - полная нагрузка на ленточный свайный фундамент, кН/м

h - глубина погружения свай, м

an - безразмерный коэффициент, зависит от приведенной ширины b’ = b/h, b = 1,4 h = 6,7; b’ = 0,208 » 0,21.



Природные напряжения в уровне подошвы условного фундамента будет равно:

szdyg = 10,26 · 2,6 + 10,66 · 0,8 + 10 · 3,3 + 8,63 · 3,3 = 102,5



Для дальнейшего расчета осадки необходимо знать удельный вес грунта твердых частиц



gS = grS, где



g - ускорение свободного падения, g = 9,8 м/с2

rS - плотность грунта твердых частиц.

gS1 = 26,36 gS2 = 26,55 gS3 = 26,068 gS4 = 26,85 gS5 = 26,26



gS · gw

gSB = ¾¾¾¾ , где

1+e



gS - удельный вес твердых частиц

gw - удельный вес воды

e - коэффициент пористости

gSb1 = 10,03 gSb2 = 10,74 gSb3 = 10,26 gSb4 = 10,66 gSb5 = 9,95



n

szg = å giII · hi sgz1

i=1



sgz1 = szdyg + g1 · h1 = 102,51 + 10 · 0,31 = 105,6 кПа

szg2 = szg1 + g2 · h2 = 105,6 + 10 · 0,38 = 109,4 кПа

szg3 = szg1 + g3 · h3 = 109,4 + 10 · 0,766= 117,1 кПа и так далее...

Аналогично рассчитываются другие значения и сводятся в табл. 2.

Таблица 2



Z/h

an

szp [кПа]

Z [м]

szq [кПа]

0,2 · szq[кПа]

1,01

6,5842

277,82

0,08

102,51

20,60

1,05

5,566

234,8588

0,39

105,6

21,12

1,1

4,684

197,6423

0,77

109,4

21,88

1,2

3,4208

144,3413

1,54

117,1

23,42

1,3

2,6889

113,4586

2,31

124,8

24,96

1,4

2,2693

95,7535

3,08

132,5

26,50

1,5

1,9742

83,3017

3,85

140,2

28,04

1,6

1,73838

73,3479

4,62

147,9

29,58

1,7

1,5861

66,9259

5,39

155,6

31,12

1,8

1,45049

61,2037

6,16

163,3

32,66

1,9

1,3388

56,4909

6,93

171,0

34,20

2,0

1,2452

52,5414

7,7

178,7

35,74

2,1

1,165

49,157

8,47

186,4

37,28

2,2

1,0956

46,229

9,24

194,1

38,82

2,3

1,027

43,3344

10,01

201,8

40,36

2,4

0,9807

41,38

10,78

209,5

41,90

2,5

0,9325

39,347

11,55

217,2

43,44



Ориентировочно, глубину снимаемой толщи HC можно определить из условия:

szp £ 0,2 · szg.



Анализ табл. 2 показывает, что это условие выполняется примерно на относительной глубине z/h = 2,5. Тогда HC= 2,5 · 6,7 = 16,75 м

Z- глубина от подошвы фундамента, м



Коэффициент Пуассона для песка, n = 0,3. Пользуясь номограммой при HC/h = 2,5 м и b = 0,21 находим d0 = 2,55. Осадка фундамента будет равна:



n · (1- n2) 887,7 · (1 - 0,32)

S = ¾¾¾¾¾ · d0 = ¾¾¾¾¾¾¾ · 2,55 = 0,03 м = 3,0 см.

p · E 3,14 · 21700



Средняя осадка для многоэтажных бескаркасных зданий с несущими кирпичными стенами не должна превышать 10 см. Следовательно, условия

S £ SU выполняется S = 3,0 см £ SU = 10 см.

Подбор молота для погружения свай

От правильности выбора дизель - молота зависит успешное погружение свай в проектное положение. В первом приближении дизель - молот можно подобрать по отношению веса его ударной части к весу сваи, которое должно быть для штанговых дизель - молотов 1,25 при грунтах средней плотности.

Минимальная энергия удара, необходимая для погружения свай определяется по формуле:



E = 1,75 · a · FV, где:



а - коэффициент, равный 25 Дж/кН,

FV - расчетная нагрузка, допускаемая на сваю, кН.

E = 1,75 · 25 · 609,6319 = 26671,3956 Дж

Пользуясь техническими характеристиками дизель - молотов подбирают такой молот, энергия удара которого соответствует минимальной. Возьмем трубчатый дизель - молот Ф - 859 с энергией удара 27 кДж. Полный вес молота Gh = 36500 Н, вес ударной части Gb = 18000 Н, вес сваи С7 - 30 равен 16000 Н. Вес наголовника принимаем равным 2000 Н. расчетная энергия удара дизель - молота Ф - 859:



ЕР = 0,4 · Gh· hm, где:



Gh’ - вес ударной части молота

hm - высота падения ударной части молота, hm = 2 м.



ЕР = 0,4 · 2 · 18000 = 14400 Дж.



Проверим пригодность принятого молота по условию:



Gh + Gb

¾¾¾¾ £ KM, где:

EP



Gh - полный вес молота

Gb - вес сваи и наголовника

KM - коэффициент, принимаемый при использовании ж/б свай равным 6.



(36500 + 16000 + 2000)

ЕР = ¾¾¾¾¾¾¾¾¾¾¾ = 3,78 < G

14400

Условие соблюдаются, значит принятый трубчатый дизель - молот С - 859 обеспечивает погружение сваи С7 -30.

Определение проектного отказа свай

Проектный отказ необходим для контроля несущей способности свай в процессе производства работ. Если фактический отказ при испытании свай динамической нагрузкой окажется больше проектного, то несущая способность сваи может оказаться необеспеченной. Формула для определения проектного отказа имеет вид:



h · A · EP m1 + Î2 · (m2 + m3)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾ · ¾¾¾¾¾¾¾¾¾ , где:

gK · FI / m · (gK · FI / m + h · A) m1 + m2 + m3



h - коэффициент, применяемый для железобетонных свай h = 1500 кН/м2

A - площадь поперечного сечения ствола сваи, м

m - коэффициент, равный 1

gK - коэффициент надежности, принимаемый при определении несущей способности сваи по расчету gK = 1,4

EP - расчетная энергия удара [кДж]

FV - расчетная нагрузка, допускаемая на сваю, [кН]

m1 - масса молота, [т]

m2 - масса сваи и наголовника, [т]

m3 - масса подбабка, [т]

Î - коэффициент восстановления удара, принимаемый при забивке железобетонных свай Î2 = 0.2



1500·0,09·14,4 3,65+0,2·(1,8+0)

SP = ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ · ¾¾¾¾¾¾¾ = 0,0016м = 1,6мм

(1,4·609,63)/1·(1,4·609,63/1+1500·0,09) 3,65+1,8+0



Список использованной литературы



  1. “Основания и фундаменты” Берлинов МВ

  2. “Расчеты осадок и прочности оснований зданий и сооружений” Гольдштейн.МН

  3. “Справочник проектировщика” под ред. Трофименкова

  4. “Проектирование оснований и фундаментов” Веселов ВА

  5. “Руководство по проектированию свайных фундаментов”

  6. Методические указания ”Примеры проектирования свайных фундаментов” Ющуба СВ

  7. СНиП 2.02.03 - 85 “Свайные фундаменты”

  8. СНиП 2.02.01 - 83 ”Основание зданий и сооружений”









Технология строительного производства

Введение

Земляные работы выполняются при постройке любого здания или сооружения и составляют значительную часть их стоимости и трудоемкости. Земляные сооружения создаются путем образования выемок в грунте или возведения из него насыпей. Выемки, разрабатываемые только для добычи грунта называются разрезом, а насыпи, образованные при отсыпке излишнего грунта - отвалом.

В гражданском и промышленном строительстве земляные работы выполняются при устройстве траншей и котлованов. Выполнение таких объемов работ возможно лишь с применением высокопроизводительных машин.

В современном строительстве широко применяются монолитные бетонные конструкции. Бетонные работы всё еще содержат ряд тяжелых и трудоемких процессов. В последнее время появились технические решения, направленные на снижение трудоемкости работ, повышение качества конструкции из монолитного бетона. Монолитные жилые и общественные здания придают большую выразительность районам, позволяют снизить стоимость строительства на 10 - 15%.

Исходные данные

Жилое здание выполняется из кирпича. Фундаменты свайные трех типов:

  1. С10 - 30 x 30, т.е. длина сваи 10 м с сечением 30 х 30 см

  2. С7 - 30 х 30 - длиной 7 м с сечением 30 х 30, принимается под среднюю стену

  3. С5 -30 х 30 - принять конструктивно расположенными под внешней стеной магазина - за счет малых нагрузок.







п/п

Длина сваи, м

Сечение,

см

1

С-10

30х30

2

С-7

30х30

3

С-5

30х30







В плане здание имеет сложное строение, поэтому расчет будет производиться для намеченных блок секций.

Земляные работы

При возведении фундаментов под многоэтажные здания разрабатываются котлованы



НК = Нр + Нпод

Нр = 0,6 м

Нпод = 2 м

НК = 2,72 + 0,6 - 0,9

НК = 2,4 м



Принимаем y = 0,8













a = L1 + L2 + L3 + 0,83 + 0,83 + 0,8 + 0,8 = 6,9 + 5,1 + 6,3 + 0,83 + 0,83 + 0,8 + 0,8

a = 21,5

a1 = a + 2 · c, где



а - ширина низа котлована

а1 - ширина верха котлована

с - заложение откоса

НК - высота котлована

m - коэффициент откоса, равный 0,72



с = 2,4 · 0,72 = 1,75 м

а1 = 21,5 + 1,75 · 2 = 25 м



VK - объём котлована



VK = (h / 6) · [a·b + c·d + (a + c) · (b + d)], м3, где:



a и b - ширина и длина подошвы котлована

c и d - ширина и длина по верху котлована

h - глубина котлована



VK = (2,4 / 6) · [21,5 · 505 + 25 · 508,5 + (21,5 + 25) · (505 + 508,5)]



На выбор типа экскаватора влияют:

  1. Объем выработки

  2. Тип земляного сооружения



Выбираем комплект машин для разработки котлованов. Выбор производится в два этапа:

  1. Выбирается тип экскаватора (прямая лопата, обратная лопата)

  2. Выбирается марка экскаватора



Оптимальная глубина разработки экскаватора Нопт = 0,65 - 0,75 от максимальной глубины разработки Нмах.

Нмах = 5,8 м, тогда Нопт = 0,7 · 5,8 = 4,06 м



Выбираем экскаватор ЭО4121А “обратная лопата” с характеристиками:

  • Вместимость ковша - 0,65 м3

  • Наибольшая глубина копания - 5,8 м

  • Наибольший радиус копания Rмах = 9 м

  • Наибольшая высота выгрузки - 5 м

  • Масса экскаватора - 19,2 т



Выбор оптимального типа и количества автосамосвалов для отвоза грунта в отвал при разработке экскаватором “обратная лопата”. Принимаем два автосамосвала марки КРАЗ - 222, грузоподъемностью 10т и емкостью кузова 8м3.

Выбор метода разработки грунта “недобора”

Для разработки недобора применяются бульдозеры с подчистным устройством. Допустимая величина недобора - 15 м3. Проектирование схем разработки грунта в котловане - одноковшовым экскаватором “ОЛ”. Разработка грунта осуществляется лобовыми и боковыми проходками.

Нзабоя = нк - НЕДОБОР = 2,4 - 0,15 = 2,25 м

Экскаватор “ОЛ” - ЭО 4121А с VКОВША = 0,65 м3

amax = 9 м

R0 - оптимальный радиус резанья, R0 = 0,8 · Rmax = 0,8 · 9 = 7,2 м

B = (1,5 - 1,7) · Rmax = 1,6 · 9 = 14,4 м



Калькуляция затрат труда и заработной платы на земельные работы

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел.час на 100м3

Затраты труда на весь V чел.час на 100м3

Расценка за 1 изм. р-к на 100м3

Зарплата на весь V работ р-к на 100м3

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е2-I-II 4-6 табл.2

Разработка грунта экскаватором “ОЛ” ЭО4121А

100м3

315,229

2,3

725,027

2-44

769-158

машинист 6р-1

Е2-I-22 табл.2 стр.86

Разработка недобора бульдозером

100м3

16,2863

0,55

8,9574

0-58,3

9-49

машинист 6р-1

Е2-I-34

Обратная засыпка

100м3

73,03

0,31

22,63

0-32,9

24-02

машинист 6р-1

Е2-I-34

срезка растительного слоя бульдозером

1000м2

12,713

0,69

8,77

0-73,1

9-29

машинист 6р-1



Для разработки недобора принимаем бульдозер Д3 -19 на базе трактора Т - 100.

Технология забивки свай

Сваи предназначаются для передачи нагрузки от здания или сооружения на грунты. По характеру работы в грунта сваи подразделяются на сваи - стойки и висячие сваи. Висячими называют сваи, передающие нагрузку от здания за счет трения в грунте.

Расположение свай в плане зависит от вида расположение свай на плане зависит от вида сооружения, от веса и места приложения нагрузки. Погружение в грунт заранее изготовленных свай осуществляется при помощи молотов разной конструкции, представляющих собой тяжелые металлические оголовки, подвешенные на тросах копров, которые поднимаются на необходимую высоту при помощи лебедок этих механизмов и свободно падают на голову свае.







Марка сваи

Масса, т

Кол-во

Суммарная



1-го элемента

общая


длина, м

1

С10 - 30

2,28

10351,3

4540

45400

2

С7 - 30

1,60

1536

960

6720

3

С5 - 30

1,15

404,8

352

1760


Итого:


12292

5852

53880



Область применения

Технологическая карта разработана на погружение забивных свай длиной до 16м при многорядном расположении свай. Номенклатура забивных железобетонных свай принята в соответствии со следующими государственными стандартами:

  • ГОСТ 19804.1 - 79* “Сваи забивные железобетонные цельные сплошного квадратного сечения с ненапрягаемой арматурой”;

  • ГОСТ 19804.2 - 79* “Сваи забивные железобетонные цельные сплошного квадратного сечения с поперечным армированием ствола и напрягаемой арматурой”; ГОСТ 19804.0 - 79* “Сваи забивные железобетонные. Общие технические условия”;

  • ГОСТ 5686 - 78* “Сваи. Методы полевых испытаний”.



При устройстве свайных фундаментов кроме технологической карты следует руководствоваться следующими нормативными документами:

  • СНиП 3.02.01 - 83 “Основания и фундаменты”;

  • СНиП П -17 - 77 “Свайные фундаменты”

  • СНиП Ш - 16 -80 “Бетонные и железобетонные конструкции сборные”

  • СНиП Ш - 4 - 80 “Техника безопасности в строительстве”



Область применения свай указана в обязательном приложении к ГОСТ 19804.0 - 78*. Технологическая карта разработана для I и II групп.

Устройство свайных фундаментов предусматривается комплексно - механизированным способом с применением серийно выпускаемого оборудования и средств механизации. Калькуляция трудовых затрат, график выполнения работ, схемы погружения свай, материально - технические ресурсы и технико - экономические показатели выполнены для забивных свай длиной 10 и 7 м сечением 30 х 30 см.

В состав работ, рассматриваемых картой входят:

  • Разгрузка свай и складирование в штабели

  • Раскладка и комплектация свай у мест погружения

  • Разметка свай и нанесение горизонтальных рисок

  • Подготовка копра к производству погрузочных работ

  • Погружение свай (строповка и подтягивание свай к копру, подъем сваи на копер и заводка в наголовник, наведение сваи на точку погружения, погружение сваи до проектной отметки или отказа)

  • Срубка голов железобетонных свай

  • Приемка работ

Организация и технология строительного процесса

До начала погружения свай должны быть выполнены следующие работы:

  • Отрывка котлована и планировка его дна

  • Устройство водостоков и водоотлива с рабочей площадки (дна котлована)

  • Проложены подъездные пути, подведена электроэнергия

  • Произведена геодезическая разбивка осей и разметка положения свай и свайных рядов в соответствии с проектом.

  • Произведена комплектация и складирование свай

  • Произведена перевозка и монтаж копрового оборудования



Монтаж копрового оборудования производится на площадке размером не менее 35 х 15м. После окончания подготовительных работ составляют двухсторонний акт о готовности и приемке строительной площадки, котлована и других объектов, предусмотренных ППР.

Подъем свай при разгрузке производят двухветевым стропом за монтажные петли, а при их отсутствии - петлей “удавкой”. Сваи на строительной площадке разгружают в штабели с рассортировкой по маркам. Высота штабеля не должна превышать 2,5м. Сваи укладывают на деревянные подкладки толщиной 12см с расположением остриями в одну сторону. Раскладку свай в рабочей зоне копра, на расстоянии не более 10м производят с помощью автокрана на подкладке в один ряд. На объекте должен быть запас свай не менее чем на 2 - 3 дня.

До погружения каждую сваю с помощью стальной рулетки размечают на метры от острия к голове. Метровые отрезки и проектную глубину погружения маркируют яркими карандашными рисками, цифрами (указывающими метры) и буками “ПГ” (проектная глубина погружения). От риски “ПГ” в сторону острия с помощью шаблона наносят риски через 20мм (на отрезке 20 см) для удобства определения отказа (погружения сваи от одного удара молота). Риски на боковой поверхности свайного ряда позволяют видеть глубину забивки сваи в данный момент и определять число ударов молота на каждый метр погружения. С помощью шаблона на сваю наносят вертикальные риски, по которым визуально контролируют вертикальность погружения свай.

Геодезическую разбивку свайного ряда производят по окончании разбивки основных и промежуточных осей здания. При разбивке центров свай по свайному ряду пользуются компарированной рулеткой. Разбивку выполняют в продольном и поперечном направлениях, руководствуясь рабочими чертежами свайных рядов. Места забивки свай фиксируют металлическими штырями длиной 20 -30 см. Вертикальные отметки головок свай привязывают к отметке репера.

Погружение свай производят дизель - молотом Ф - 859 на базе экскаватора ЭО - 6113, оборудованным дизель молотом типа СП - 78. Для забивки свай рекомендуется применять Н - образные литые и сварные наголовники с верхней и нижней выемками. Свайные наголовники применяют с двумя деревянными прокладками из твердых пород (дуб, бук, граб, клен). погружение свай производится в следующей последовательности:

  1. строповка сваи и подтягивание к месту забивки

  2. установка сваи в наголовник

  3. наведение сваи в точку забивки

  4. выверка вертикальности

  5. погружение сваи до расчетной отметки или расчетного отказа



Строповку сваи для подъема на копер производят универсальным стропом, охватывающим сваю петлей “удавкой” в местах расположения штыря. К копру сваи подтягивают рабочим канатом с помощью отводного блока по спланированной или по дну котлована по прямой линии.

Молот поднимают на высоту, обеспечивающую установку сваи. Заводку сваи в наголовник производят путем ее подтягивания к мачте с последующей установкой в вертикальное положение. Поднятую на копер сваю наводят на точку забивки и разворачивают свайным ключом относительно вертикальной оси в проектное положение. Повторную выверку производят после погружения сваи на 1 м и корректируют с помощью механизмов наведения.

Забивку первых 5 - 20 свай, расположенных в различных точках строительной площадки, производят залогами (число ударов в течении 2 минут) с подсчетом и регистрацией количества ударов на каждый метр погружения сваи. В конце забивки, когда отказ сваи по своей величине близок к расчетному, производят его измерение. Измерение отказов производят с точностью до 1мм и не менее, чем по трем последовательным залогам на последнем метре погружения сваи. За отказ, соответствующий расчетному, следует принимать минимальное значение средних величин отказов для трех последовательных залогов.

Измерения отказов производят с помощью неподвижной реперной обноски. Сваю, не давшую расчетного отказа, подвергают контрольной добивке после ее “отдыха” в грунте в соответствии с ГОСТ 5686 - 78*. В случае, если отказ при контрольной добивке превышает расчетный, проектная организация устанавливает необходимость контрольных испытаний свай статической нагрузкой и корректировки проекта свайного фундамента. Исполнительными документами при выполнении свайных работ являются журнал забивки свай и сводная ведомость забитых свай.

Срубку голов свай начинают после завершения работ по погружению свай на захвате. В местах срубки голов наносят риски. Срубку выполняют с помощью установки для скручивания голов СП - 61А, смонтированной на автомобильном кране. Работу по срубке голов свай выполняют в следующем порядке:

  1. установку СП - 61А опускают на сваю, при этом ее продольная ось должна быть перпендикулярна плоскости одной из граней

  2. держатели и захваты совмещают с риской на свае

  3. включают гидроцилиндры установки, которые приводят в движение захваты, разрушающие бетон по риске

  4. газовой сваркой производят срезку арматуры сваи.



Погружение свай производят при промерзании грунта не более 0,5 м. При большем промерзании грунта погружение свай производят в лидирующие скважины. Диаметр лидирующих скважин при погружении свай должен быть не более диагонали и не менее стороны поперечного сечения сваи, а глубина - 2/3 глубины промерзания. Проходку лидирующих скважин производят трубчатыми бурами, входящими в состав оборудования копра.

Работу по погружению свай выполняют следующие монтажные звенья:

  • разгрузку и раскладку свай - звено № 1: машинист 5р. - 1 чел., такелажники (бетонщики) 3р. - 2 чел.

  • разметку, погружение свай - звено № 2: машинист 6 р. - 1 чел., копровщики 5р. - 1 чел., 3 р. - 1 чел.

  • срубку голов свай - звено № 3: машинист 5р. - 1 чел., такелажники (бетонщики) 3р. - 2 чел.

  • срезку стержней арматуры - звено № 4: газорезчик 4р. - 1 чел.



Все звенья, работающие на погружении свай включают в комплексную бригаду конечной продукции.

В технологической карте предусматривается повышение производительности труда в среднем на 15% за счет максимального использования фронта работ , внедрения комплексной механизации и наиболее производительных машин, комплектной поставки, рациональных решений по организации и технологии производства работ.

Работы по погружению свай должны выполняться в соответствии со СНиП Ш - 16 - 80, СНиП Ш - 4 - 80 и “Правилами устройства и безопасной эксплуатации грузоподъемных кранов”. Между машинистом копра и помощником должна быть установлена надежная сигнальная связь. Каждый сигнал должен иметь только одно значение и подаваться одним лицом. При погружении свай запрещается находиться в зоне работы копрового оборудования, радиус которой превышает высоту мачты на 5 м. Сваи рекомендуется подтягивать по прямой линии в пределах видимости машиниста копра только через отводной блок, закрепленный у основания копра. Зона работ по срубке голов свай должна быть временно ограждена. Газовую резку арматуры необходимо выполнять с соблюдением соответствующих требований СНиП Ш - 4 - 80.32

Калькуляция трудовых затрат на свайные работы

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел.час, маш.смена

Затраты труда на весь V, чел.день

Расценка за 1 изм. р-к

Зарплата на весь V работ р-к

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е12 - 52 - 4

Разгрузка свай и укладка их в штабеля

100 свай

58,52

21,3

7,1

152

50,66

12-87

4-98

753-152

291-42

такелажники 3р-2

машинист 5р-1

Е12 - 52

Переворачивание свай для разметки рисок

100 свай

58,52

28,4

9,47

202,6

67,58

17-15

6-65

1003-61

389-158

такелажники 3р-2

машинист 5р-1

Е12 - 52 -3

Раскладка свай у мест погружения

100 свай

58,52

30,0

10,0

214,18

71,39

18-12

7-02

1060-38

410-81

такелажники 3р-2

машинист 5р-1

Е12 - 66

Разметка свай краской через 1 м

100 свай

53,88

1,2

78,84

0-66,6

358-84

кровельщики 3р-1

5р-1

Е12 -21

Погружение свай

1 свая

5852

3,45

1,15

2462,12

820,7

2-35

0-81

13752-20

4740-12

машинист 6р-1

Е12 -21

Срубка голов ж/б свай

1 свая

5852

0,351

0,117

250,49

83,498

0-21,2

0-08,2

1240-62

479-86

такелажники 3р-2

машинист 5р-1

Е12 -21

Срезка стержней арматуры

10 перерезов

23408

0,07

199,82

0-04,4


102-99

газорезчик 4р-1


Итого:





4741,99

1093,82


19198-75

6311-36




Технология возведения монолитных железобетонных фундаментов

Общие сведения

Процесс возведения монолитных железобетонных фундаментов является комплексным процессом в который входят:

  1. Устройство опалубки

  2. Установка арматурных каркасов

  3. Подача и укладка бетонной смеси в опалубку

  4. Выдерживание и уход за бетоном

  5. Снятие опалубки после достижения бетоном фундамента определенной прочности

  6. Вспомогательный процесс - транспортирование арматурных каркасов, опалубки и бетонной смеси.



Опалубка - временная вспомогательная конструкция, обеспечивающая заданные геометрические размеры и очертания бетонного элемента конструкции. Опалубка должна отвечать следующим требованиям:

  1. Быть достаточно прочной.

  2. Не изменять форму в рабочем положении.

  3. Воспринимать технологические нагрузки и давление бетонной смеси без изменения основных геометрических размеров.

  4. Быть технологичной, т.е. легко устанавливаться и разбираться.



Принимаем металлическую инвентарную (унифицированную) опалубку, состоящую из инвентарных щитов (см. спецификацию элементов опалубки)



Марка

Кол-во

Масса, кг

Площадь, м

Размеры

щитов


1-го эл-та

общая

1-го эл-та

общая

опалубки

Щ-1

20

71

1420

0,9

18

0,6 х 1,5

Щ-2

48

57

2736

0,72

34,56

0,6 х 1,2

Щ-3

82

52,250

4284,5

0,66

54,12

0,6 х 1,1

Щ-4

40

85,5

3420

1,08

43,2

0,6 х 1,8



Техника безопасности

  1. Не допускается размещение на опалубке оборудования и материалов, не предусмотренных проектом, а так-же пребывание людей, не участвующих в процессе производства работ.

  2. Монтируемые элементы опалубки освобождают от крюка подъемного механизма только после их полного закрепления.

  3. На рабочем месте опалубников должны быть созданы безопасные условия труда.

  4. В местах складирования опалубки ширина проходов должна быть не менее 1м.



Армирование фундаментов

Армируются фундаменты плоскими каркасами, которые доставляются на площадку из ЖБК и ДСК.







































На строительной площадке их сваривают в пространственные каркасы. Монтаж арматурных изделий состоит из следующих технологических операций:

  1. Разгрузка и подача изделий непосредственно в сооружения или на площадку временного складирования.

  2. Установка в проектное положение и закрепление стыков электросваркой.

  3. Проверка выполненных работ и сдача их мастеру.



Бетонирование

Способы транспортирования бетонной смеси в зависимости от применяемых средств могут быть порционными и непрерывными. Порционное транспортирование осуществляется с использованием автосамосвалов.

Оборудование полачи и распределения бетонной смеси

Для интенсификации выгрузки бетонной смеси используем поворотную бадью. Загружаем ее при помощи самосвала. Затем, кран поднимает бадью в вертикальной плоскости и подает ее к месту выгрузки. Корпус бадьи снабжен полозьями, которые служат направляющими при подъеме бадьи в вертикальное положение. Для предотвращения зависания бетонной смеси на корпус бадьи устанавливают нависной вибратор.



























При подаче бетонной смеси краном, принимаются меры против самопроизвольного открывания затворов бадей. При выгрузке бетонной смеси из бадьи уровень низа бадьи должен находиться не выше 1м от бетонируемой поверхностию Запрещается стоять под бадьей во время ее установки и перемещения.

Калькуляция трудовых затрат на бетонные работы

Обосно-вание СНиП

Наименование работ и процессов

Единицы измерен. V раб.

V работ м3 на 100м3

Норма времени, чел.час, маш.смена

Затраты труда на весь V, чел.день

Расценка за 1 изм. р-к

Зарплата на весь V работ р-к

Сост. звена по ЕНиР

1

2

3

4

5

6

7

8

9

Е4-I-44

Установка арматурных сеток и плоских каркасов

1 каркас

1860

1,3

2418

0-88,1

1638,66

арматурщик 3р-1, 2р-1

Е4-I-37

Устновка металлической инвентарной опалубки

1 м2

4309,76

0,39

1680,8

0-29,1

1254,14

слесарь - строитель4р-1, 3р-1

Е4-I-37

Укладка бетонной смеси в фундамент

1 м3

2677,72

0,33

883,64

0-19,9

532,86

бетонщик 4р-1, 2р-1

Е4-24-13

Подача бетонной смеси стреловым краном в бадьях

1 т

6694,3

0,225

1506,21

0-149

997,45

машинист 6р-1

Е4-I-42

Приемка бетонной смеси из автосамосвала в поворотную бадью

1 м3

2677,72

0,085

227,66

0-042

112,46

бетонщик 4р-1, 2р-1

Е4-I-42

Частичная перекидка бетонной смеси в конструкцию вручную

1 м3

133,88

0,75

100,41

0-40

53,95

бетонщик 4р-1, 2р-1

Е4-I-54

Покрытие бетонной поверхности опилками слоем до 0,1 м

1 м3

446,94

0,27

120,67

0-17,3

77,32

бетонщик 2р-1

Е4-I-54

Поливка бетонной поверхности из брансбойта

100 м2

4469,4

0,14

6,256

0-09

4,02

бетонщик 2р-1

Е4-I-57

Распалубливание

1 м3

4309,76

0,21

905,04

0-14,1

607,67

слесарь - строитель2р-1, 3р-1


Итого:




7848,63


5278,53


Укладка бетонной смеси

Технологический процесс бетонирования состоит из подготовительных, вспомогательных и основных операций.

Подготовительные операции - перед приемом бетонной смеси подготавлиают территорию объекта, подъездные пути, места разгрузки, емкости для приема бетона.

Вспомогательные операции - арматуру, закладные детали, анкерные болты очищают от грязи и от отслаивающейся ржавчины.

Основные операции: укладывают смесь слоями в соответствии с указаниями проекта, т.е. толщиной ~ 0,3м, при этом толщина каждого слоя должна быть не более глубины проработки вибратора; укладку и уплотнение бетонной смеси необходимо осуществлять в непрерывной последовательности.

Область применения

Типовая технологическая карта принимается при проектировании организации бетонирования ленточных фундаментов. Подача бетонной смеси призводится стреловым краном (Q = 5 - 12 т) в бадьях, емкостью 1 -2 м3 в зависимости от грузоподъемности. Укладку 100 м3 бетона звено из 9 человек произведет за 2,12 смены, при работе со стреловым краном.

Организация и технология строительного производства

  • До начала бетонирования должны быть выполнены по фронту и приняты по акту оплубка и арматура фундаментов в количестве, достаточном для бесперебойного бетонирования в течение 1 -2 смен, а также опробованы все приспособления для подачи и уплотнения бетона.

  • Прием и подачи бетонной смеси к месту укладки производится в поворотных бадьях, емкостью 1 м3 при грузоподъемности крана 5 т на рабочем вылете стрелы 3 м. Бадьи под загрузку устанавливаются на переносной настил для предотвращения потерь раствора.

  • Бетонирование ростверка осуществляется стреловым краном.

  • Уплотнение бетонной смеси производится с соблюдением требованием СНиП III - ВI - 62 п.п. 4.35 ~ 4.43.

  • При длительных перерывах в укладке бетонной смеси цементную пленку в рабочих швах фундамента удаляют с помощью водовоздушной форсунки струей воды под напором 3 - 5 атмосфер или прведенной металической сеткой.

Контроль качества и приемка работ

В процессе бетонирования мастер или прораб должны вести наблюдение за производством работ согласно СНиП III - ВI - 62 п.п. 5.11 ~ 5.12, а результаты наблюдения записывать в журнал бетонных работ ро установленой форме.

При исправлении дефектов в раковинах больших размеров отбивается весь тыхлый бетон, а поверхность здорового бетона очищается проволочной щееткой и промывается водой. Затем раковины заделываются бетонной смесью с мелким щебнем или гравием.

Уплотнение бетонной смеси

Уплотнение бетонной смеси при укладке ее в конструкции делается для получения плотного, прочного и долговечного бетона. Уплотнение бетонной смеси произаодится, как правило виброванием, для чего в свежеуплотненную бетонную смест погружается вибратор, который передает смеси свои колебания. Под действием колебаний бетонная смесь разрушается и начинает течь, хорошо заполняя опалубку; при этом вытесняется воздух из смеси. В результате получается плотный бетон. Уплотнение бетонной смеси может производиться глубинными и поверхностными вибраторами. Для уплотнения бетонной смеси в ленточных фундаментах, как правило, применяется глубинный вибратор с гибким валом со встроенным электродвигателем.



















Глубинный вибратор выбирают по диаметру вибронаконечника, в зависимости от густоты армирования. Шаг перестановки вибратора не должен превышать 1,5 радиуса его действия.































R - радиус действия вибратора.

Выбираем глубинный вибратор ИВ - 47. Показатели:

  • Наружный диаметр корпуса - 76 мм

  • Длина корпуса - 440 мм

  • Радиус действия - 25 ~ 30 см

  • Напряжение электродвигателя - 36 В

  • Мощность электродвигателя - 1,2 кВт

  • Длина гибкого вала - 3400 мм

  • Масса вибратора - 39 кг

  • Частота тока - 50 Гц



Количество транспортных средств для доставки бетонной смеси на объект

После определения ведущей машины комплекта кран - бадья и типа транспортных средств по сметной эксплуатационной производительности ведущей машины определяют количество транспортных средств, необходимых для бесперебойной доставки бетонной смеси на объект.

Число автотранспортных единиц в смену определяется по формуле:

КР · ПЭ 1,08 · 75

N = ¾¾¾¾ = ¾¾¾¾¾ = 6,67 » 7 машин.

ПА 12,1



КР - коэффициент, учитывающий резерв производительности ведущей машины, КР = 1,08

ПЭ - сметная эксплуатационная производительность ведущих машин, ПЭ = 75 м3 в смену,

ПА - сметная эксплуатационная производительность автотранспортной единицы, м3 в смену, определяется по формуле:



60 · V · tCM · KB 60 · 3 · 0,885 · 8,2

ПА = ¾¾¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾ = 12,1

tЦ 108,35



V - объем бетонной смеси, загружаемую в транспортную единицу, м3,

tCM - продолжительность смены - 8,2 часа,

KB - коэффициент использования транспортной единицы во времени, KB =0,885

tЦ - продолжительность транспортного цикла для транспортного средства:



2 · L · 60 2 · 15 · 60

tЦ = tЗ + ¾¾¾¾¾ + tР = 6 + ¾¾¾¾¾ + 3,5 = 108,35 мин, [1 час 50 мин.]

VСР (15+20) / 2



tЗ - время загрузки транспортной единицы бетонной смесью на заводе, 6 мин.

L - расстояние перевозки от БСЦ, 15 км.

VСР - средняя скорость движения транспортной единицы в груженом (15 км/ч) и порожнем (20 км/ч) направлении.

V - объем смеси, перевозимой за одну поездку, м3

tР - разгрузка бетонной смеси из транспортной единицы в бадьи, 3,5 мин.



Технико - экономические показатели



n

Ce = 1,08 · (E0I + åCM · tn) + 1,5 · (E0II + Зпл) + Эпл

i=1



E0I - стоимость единовременных затрат, 17,75

n

åCM - суммарная стоимость

i=1

tn - число механизмов

E0II - заработная плата в составе единовременных работ

Зпл - чистая заработная плата



n

Te = Етр · å · tn + Ззатр.тр)

i=1



Етр - трудозатраты единовременных работ

М - трудозатраты за 1 час работы механизма

Ззатр.тр - затраты труда из калькуляции



P

T0 = ¾¾

nэк



P - общий объем

nэк - количество тонн, смонтируемых за смену







n

nэк = å ni · qi · t · Kв

i=1



ni - циклы в час

qi - количество элементов в цикле

t - время в смену, 8,2 ч

Kв - коэффициент использования во времени



60

nэк = ¾¾ · tс · Kв

tц



S · 60 S · 60

tц = tс + tр + ¾¾¾ + ¾¾¾

V1 V2



tс - время строновки

tр - время расстроновки

S - расстояние от завода до объекта

V1 - скорость груженого транспорта

V2 - скорость порожнего транспорта.



n Синв · Т0

Пэ = Се · V + Ен · å ¾¾¾¾

i=1 Tг



Се - себестоимость монтажа,

V - общий объем,

Ен - коэффициент эффективности капитальных вложений,

Tг - время работы по году.





Список использованной литературы

  1. “Бетонные работы” Балицкий ВС

  2. “Технология монолитного бетона и железобетона” Евдокимов

  3. “Технология строительного производства” под ред. Вареника ЕИ

  4. “Справочник молодого арматурщика, бетонщика” Ждановский БВ

  5. “Строительные краны. Справочник” Сташевский ВП

  6. “Комплексная механизация в жилищном строительстве” Ламцов ВА

  7. “Комплексная механизация трудоемких работ в строительстве” Казанока НС

  8. “Бетонные работы” Афанасьев АА

  9. ЕНиР сборник 4, выпуск 1 “Монтаж сборных и устройство монолитных железобетонных конструкций.

  10. ЕНиР сборник 2, выпуск 1 “Земляные работы”

  11. ЕНиР сборник 12 “Свайные работы”

  12. Типовая технологическая карта на свайные работы и искусственное закрепление грунтов”





Расчётно - конструктивный раздел

Расчёт железобетонных ленточных ростверков свайных фундаментов для наружных стен

Ростверки под стенами кирпичных зданий, опирающиеся на железобетонные сваи, расположенные в два ряда, должны рассчитываться на эксплуатационные нагрузки и на нагрузки, возникающие в период строительства. Расчёт ростверка на эксплуатационные нагрузки следует вести из условия распределения нагрузки в виде треугольников с наибольшей ординатой Р, тс/м, над осью сваи, которая определяется по формуле:


q0 · L

P = ¾¾¾ , где:

a



L - расстояние между осями свай по линии ряда или рядов, [м]

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка, [кН/м]

a - длина полуоснования эпюры нагрузки [м], определяемая по формуле:



______

3 Ep · Ip

a = 3,14 · Ö ¾¾¾ , где:

Ek · bk



Ep - модуль упругости бетона ростверка [МПа].

Ip - момент инерции сечения ростверка.

Ek - модуль упругости блоков бетона над ростверком.

bk - ширина стены блоков, опирающихся на ростверк.



bр · h3р 1,5 · 0,63

Ip = ¾¾¾ = ¾¾¾¾ = 0,027 м4

12 12



bр - ширина ростверка, равна 1,5 м

hр - высота ростверка, равна 0,6 м



Подставим значения в вышеприведённую формулу:



__________

3 2,7 · 0,027 3_______

a = 3,14 · Ö ¾¾¾¾¾ = 3,14 · Ö 0,03698 = 3,14 · 0,33316 = 1,046 » 1,1 м

2,7 · 0,77



тогда:

q0 · L 1696,36 · 1,3

P = ¾¾¾ = ¾¾¾¾¾¾¾ = 2004,78

a 1,1



Наибольшую ординату эпюры сваи - р0 можно определить по формуле:



q0 · Lp

р0 = ¾¾¾ , где:

a



Lp - расчётный пролёт [м], равный 1,05 · Lсв, где L - расстояние между сваями в свету [м]



1696,36 · 0,84

р0 = ¾¾¾¾¾¾¾ = 1295,4

1,1



Расчётные изгибающие моменты Моп и Мпр определяются по формулам:



q0 · L2p 1696,36 · 0,842

Моп = - ¾¾¾ = - ¾¾¾¾¾¾¾¾ = - 99,74 кНм2

12 12



q0 · L2p 1696,36 · 0,842

Мпр = ¾¾¾ = ¾¾¾¾¾¾¾¾ = 49,87 кНм2

24 24



Поперечную перерезывающую силу в ростверке на грани сваи можно определить по формуле:



q0 · Lp 1696,36 · 084

Q = ¾¾¾ = ¾¾¾¾¾¾¾ = 712,47 кН , где:

2 2

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка

Lp - расчётный пролёт [м]



Определим характеристики прочности бетона.

Rв - расчётное сопротивление бетона класса В-20,

Rв = 11,5 МПа.

Расчёт прочности ростверка по сечениям нормальным к продольной оси. Подбор продольной арматуры произведём согласно СНиП 2.03.01 - 84 п. 3.18. Вычисляем коэффициент am:


M

am = ¾¾¾¾¾¾ , где:

Rb · b · h20



М - момент в пролёте.

b - ширина прямоугольного сечения [м]

h0 - рабочая высота [м],

h0 = 600 - 50 =550 мм.



49,87 · 106

am = ¾¾¾¾¾¾¾¾¾¾¾ = 0,01

11,5 · 103 · 1,5 · 0,552



При am = 0,01 находим h = 0,977, тогда требуемую площадь растянутой арматуры определим по формуле:



M

As = ¾¾¾¾¾ , где:

Rs · h · h0



М - момент в пролёте

Rs - рассчётное сопротивление арматуры



49,87 · 106

As = ¾¾¾¾¾¾¾¾¾ = 254 мм2

365 · 0,977 · 0,55



Принимаем арматуру класса А -III 8Æ7 мм (As = 308 мм2). Так - как диаметр арматуры меньше 10 мм, то конструктивно принимаем арматуру Æ12 мм, где As = 905 мм2.

Сечение на опоре:

  • Момент на опоре равен - 99,74 кНм

  • Рабочая высота h0 = 600 - 50 = 550 мм

Вычисляем коэффициент am:


М 99,74 · 106

am = ¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾ = 0,019

Rb · b · h20 11,5 · 103 · 1,5 · 0,55



Находим h = 0,99, тогда требуемую площадь растянутой арматуры определим по формуле, принимая арматуру класса А - III, Rs = 360 МПа:



M 99,74 · 106

As = ¾¾¾¾¾ = ¾¾¾¾¾¾¾¾ = 501,85 мм2

Rs · h · h0 360 · 0,99 · 550



Принимаем стержни из арматуры А - III, 8Æ10 мм (As = 628 мм2).

Расчёт поперечных стержней

Расчёт ведут по наклонному сечению. Диаметр поперечных стержней задают из условия сварки, так, чтобы отношение диаметра поперечного стержня к диаметру продольного составляло 1/4, поэтому диаметр поперечных стержней принимаем равным 4 мм, арматура класса А - I с шагом S = 310мм.

Расчёт на продавливание

Расчёт на продавливание конструкций от действия сил, равномерно распределённых на огромной площади должен производиться из условия:

F £ a · Rbt · Um · h0

F - продавливающая сила

a - коэффициент, принимаемый равным 1

Um - среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании.

При определении Um предполагается, что продавливание происходит по боковой поверхности пирамиды, а боковые грани наклонены под углом 45О к горизонтали. При установке в пределах пирамиды продавливания хомутов, расчёт должен производиться из условия:

F = Fd + 0,8 · Fsw = 1696,36 + 0,8 · 6,615 =1701,65

Fd = F

Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани расчётной пирамиды продавливания по формуле:



Fsw = å Rsw · Asw , где:

Rsw - расчётное сопротивление арматуры, не должно превышать значения, соответствующего арматуре класса А - I. При учёте поперечной арматуры значение Fsw должно быть не менее 0,5 · Fb

Asw - площадь поперечного сечения арматуры хомутов, равна 12,6 мм2



Fsw = 3 · 175 · 103 · 0,0000126 = 6,615



F £ 1· 0,9 · 2 · 0,55 = 990 кН = Р

F = 1696,36 > Р = 990 кН, что удовлетворяет условию расчёта на продавливание.

Расчёт железобетонных ленточных ростверков свайных фундаментов для внутренних стен

Ростверки под стенами кирпичных зданий, опирающиеся на железобетонные сваи, расположенные в два ряда, должны рассчитываться на эксплуатационные нагрузки и на нагрузки, возникающие в период строительства. Расчёт ростверка на эксплуатационные нагрузки следует вести из условия распределения нагрузки в виде треугольников с наибольшей ординатой Р, тс/м, над осью сваи, которая определяется по формуле:


q0 · L

P = ¾¾¾ , где:

a



L - расстояние между осями свай по линии ряда или рядов, [м]

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка, [кН/м]

a - длина полуоснования эпюры нагрузки [м], определяемая по формуле:

______

3 Ep · Ip

a = 3,14 · Ö ¾¾¾ , где:

Ek · bk



Ep - модуль упругости бетона ростверка [МПа].

Ip - момент инерции сечения ростверка.

Ek - модуль упругости блоков бетона над ростверком.

bk - ширина стены блоков, опирающихся на ростверк.



bр · h3р 1,5 · 0,63

Ip = ¾¾¾ = ¾¾¾¾ = 0,027 м4

12 12



bр - ширина ростверка, равна 1,5 м

hр - высота ростверка, равна 0,6 м



Подставим значения в вышеприведённую формулу:



__________

3 2,7 · 0,027 3_____

a = 3,14 · Ö ¾¾¾¾¾ = 3,14 · Ö 0,045 = 3,14 · 0,35569 » 1,1 м

2,7 · 0,60



тогда:

q0 · L 633,4 · 1,3

P = ¾¾¾ = ¾¾¾¾¾ = 748,56

a 1,1



Наибольшую ординату эпюры сваи - р0 можно определить по формуле:



q0 · Lp

р0 = ¾¾¾ , где:

a



Lp - расчётный пролёт [м], равный 1,05 · Lсв, где L - расстояние между сваями в свету [м]



633,4 · 0,84

р0 = ¾¾¾¾¾¾ = 483,68

1,1



Расчётные изгибающие моменты Моп и Мпр определяются по формулам:



q0 · L2p 633,4 · 0,842

Моп = - ¾¾¾ = - ¾¾¾¾¾¾ = - 37,0 кНм2

12 12



q0 · L2p 633,4 · 0,842

Мпр = ¾¾¾ = ¾¾¾¾¾¾ = 19,0 кНм2

24 24



Поперечную перерезывающую силу в ростверке на грани сваи можно определить по формуле:

q0 · Lp 633,4 · 084

Q = ¾¾¾ = ¾¾¾¾¾¾ = 266,02 кН , где:

2 2

q0 - равномерно распределённая нагрузка от здания на уровне низа ростверка

Lp - расчётный пролёт [м]



Определим характеристики прочности бетона.

Rв - расчётное сопротивление бетона класса В-20,

Rв = 11,5 МПа.

Расчёт прочности ростверка по сечениям нормальным к продольной оси. Подбор продольной арматуры произведём согласно СНиП 2.03.01 - 84 п. 3.18. Вычисляем коэффициент am:


M

am = ¾¾¾¾¾¾ , где:

Rb · b · h20



М - момент в пролёте.

b - ширина прямоугольного сечения [м]

h0 - рабочая высота [м],

h0 = 600 - 50 =550 мм.


19,0 · 106

am = ¾¾¾¾¾¾¾¾¾¾¾ = 0,01

11,5 · 103 · 1,5 · 0,552


При am = 0,01 находим h = 0,995, тогда требуемую площадь растянутой арматуры определим по формуле:



M

As = ¾¾¾¾¾ , где:

Rs · h · h0



М - момент в пролёте

Rs - рассчётное сопротивление арматуры



19 · 106

As = ¾¾¾¾¾¾¾¾¾ = 117,5 мм2

365 · 0,995 · 0,55



Принимаем арматуру класса А -III 8Æ7 мм (As = 308 мм2). Так - как диаметр арматуры меньше 10 мм, то конструктивно принимаем арматуру Æ12 мм, где As = 905 мм2.

Сечение на опоре:

  • Момент на опоре равен - 37,0 кНм

  • Рабочая высота h0 = 600 - 50 = 550 мм

Вычисляем коэффициент am:


М 37 · 106

am = ¾¾¾¾¾¾ = ¾¾¾¾¾¾¾¾¾¾ = 0,01

Rb · b · h20 11,5 · 103 · 1,5 · 0,55



Находим h = 0,995, тогда требуемую площадь растянутой арматуры определим по формуле, принимая арматуру класса А - III, Rs = 360 МПа:

M 37 · 106

As = ¾¾¾¾¾ = ¾¾¾¾¾¾¾¾ = 235 мм2

Rs · h · h0 360 · 0,995 · 550



Принимаем стержни из арматуры А - III, 8Æ10 мм (As = 628 мм2).

Расчёт поперечных стержней

Расчёт ведут по наклонному сечению. Диаметр поперечных стержней задают из условия сварки, так, чтобы отношение диаметра поперечного стержня к диаметру продольного составляло 1/4, поэтому диаметр поперечных стержней принимаем равным 4 мм, арматура класса А - I с шагом S = 310мм.

Расчёт на продавливание

Расчёт на продавливание конструкций от действия сил, равномерно распределённых на огромной площади должен производиться из условия:

F £ a · Rbt · Um · h0

F - продавливающая сила

a - коэффициент, принимаемый равным 1

Um - среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании.

При определении Um предполагается, что продавливание происходит по боковой поверхности пирамиды, а боковые грани наклонены под углом 45О к горизонтали. При установке в пределах пирамиды продавливания хомутов, расчёт должен производиться из условия:

F = Fd + 0,8 · Fsw = 633,4 + 0,8 · 6,615 =638,39

Fd = F

Fsw определяется как сумма всех поперечных усилий, воспринимаемых хомутами, пересекающими боковые грани расчётной пирамиды продавливания по формуле:



Fsw = å Rsw · Asw , где:

Rsw - расчётное сопротивление арматуры, не должно превышать значения, соответствующего арматуре класса А - I. При учёте поперечной арматуры значение Fsw должно быть не менее 0,5 · Fb

Asw - площадь поперечного сечения арматуры хомутов, равна 12,6 мм2



Fsw = 3 · 175 · 103 · 0,0000126 = 6,615



F = 633,4 < 990, что удовлетворяет условию расчёта на продавливание.

Список использованной литературы

  1. “Железобетонные конструкции” , Байков АП

  2. СНиП 2.03.01 - 84 “ЖБК”

  3. “Руководство по проектированию свайных фундаментов. Учебное пособие”, Бородачёв ОЛ











Организация строительства

Обоснование срока строительства

Одной из целей анализа является определения схемы разбивки здания на участки для организации поточного строительства. За участок, как правило, принимают целый пролёт или температурный блок. Желательно, чтобы объект был разбит на участки, количеством не менее 3 и не более 5.

Другой задачей анализа является определение видов конструктивных элементов, их размеров, характеристик для решения вопросов по технологии и организации строительства.

Все данные о сборных элементах, составленных на основании конструктивных чертежей и каталогов типовых конструкций заносятся в таблицу.

Нормативная продолжительность строительства устанавливается по “Нормам продолжительности строительства” (СН - 440 - 79). В них указываются сроки строительства зданий и сооружений в разрезе отраслей промышленности с выделением подготовительного и основного периодов. Продолжительность сроков строительства здания определяется по строке норм, соответствующих конструкции и общей площади квартир всего здания для средней этажности, определяемой по формуле:



å (Sn · Эn)

Эср = ¾¾¾¾¾ , где:

Sзд



Sn - площадь застройки участка,

Эn - число этажей отдельного участка,

Sзд - площадь застройки всего здания,

n - порядковый номер отдельного участка.



По расчету нормативный срок возведения объекта равен 6 лет.

Наименование

Эскиз элемента

Объём материала

Масса

Общее количество

Расход материала, м3

элементов


в 1 элементе, м3

элемента, т

элементов, шт.

всего

1 блок - секция

Сваи С10-30



0,63

1,60

5852

4849,2

234,5

Блоки стен подвала БС-24.6.6-Т


0,815

1,96

3696

3012,24

125,51

Цокольные блоки ЦБ-2-77


1,338

2,36

949

1269,22

63,46

Перемычки БПБ21-27.п-1


0,114

0,28

13476

1536,26

74,89

Лестничные площадки ИЛП43-2


1,58

0,68

200

316

15,8

Лестничные марши ЛМ28-11


0,58

1.28

340

197,2

9,86

Шахты лифтов ШЛС28-40


1,86

4,65

220

361,6

18,04

Санкабины СК-13


1,307

3,20

720

941,04

47,05

Перекрытия



0,96

2,40

8640

8294,4

414,72

Покрытия



0,96

2,40

960

1198,08

46,08

Перегородки гибсобетонные


1,43

1,79

3322

4750,46

231,66

Кирпичная кладка


0,018

0,003

22292

401,25

1087

Двери



0,828

0,05

5632

4663,29

226,044

Окна



1,86

0,025

3740

5096,4

254,87

Витражи



4,96

0,20

18

106,62


Полы





36200


1810

Обои





154640


7732

Остекление





5096,4


254,82

Кровля





79420


3971

Составление ведомости объёмов и трудоёмкости работ.


Случайные файлы

Файл
3902-1.rtf
100497.rtf
161270.rtf
153551.rtf
143172.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.