Экономико-математическое моделирование (183937)

Посмотреть архив целиком

1. Определить нижнюю и верхнюю цену игры, заданной платежной матрицей



Имеет ли игра седловую точку?

Решение:

Найдем по каждой строчке платежной матрицы минимальное число αi = mini1, αi2, αi3) – это гарантированный выигрыш игрока А, при выборе им соответствующей стратегии. Чтобы получить максимально возможный гарантированный выигрыш, игрок А должен выбрать ту стратегию, для которой αij имеет максимальное значение – α = max1, α2, α3) – это нижняя цена игры.

Для игрока В выберем по каждому столбцу максимальное число βj = max1j, α2j, α3j) – это гарантированный проигрыш игрока В при выборе им стратегии Вj. Найдем минимальное из этих чисел β = min 1, β 2, β 3) – это верхняя цена игры. Занесем полученные данные в таблицу 1.

Нижняя цена игры α = 8 равна верхней цене игры β = 8. Значит, игра имеет седловую точку. Для игрока А оптимальная стратегия – А1, для игрока В оптимальная стратегия – В1.

Ответ: α = β = 8, игра имеет седловую точку, оптимальные стратегии (А1, В1).


Таблица 1 – Определение цены игры платежной матрицы


В1

В2

В3


А1

8

9

9

α1 = min (8, 9, 9) = 8

А2

6

5

8

α2 = min (6, 5, 8) = 5

А3

3

4

5

α3 = min (3, 4, 5) = 3


β1 = max(8, 6, 3)

β1= 8

β2 = max(9, 5, 4)

β2= 9

β3 = max(9, 8, 5)

β3= 9

α = max(8, 5, 3) = 8

β = min (8, 9, 9) = 8

2. Решить графически игру, заданную платежной матрицей


Решение:

Дана игра 4 х 2 , то есть у игрока А имеется 4 стратегии, а у игрока В – 2. Поэтому, будем решать игру для игрока В. Построим оси: ОХ – на ней будем отмечать вероятности, с которыми игрок использует ту или иную стратегии, и ОУ – на ней будем откладывать цену игры. На расстоянии единица от оси ОУ проведем еще ось параллельную ей, как показано на рисунке 1.

Если игрок А выбирает стратегию А1, то игрок В, используя свои стратегии с вероятностями (q1, q2), будет проигрывать, в среднем, q1∙α11+q2∙α12 = q1∙(-3) +q2∙(-4). Отметим на оси ОУ α11 = -3, а на оси ей параллельной α12 = -4 и соединим эти точки прямой линией – она показывает, сколько, в среднем, получает игрок В, если А использует стратегию А1, а В чередует стратегии В1 и В2 с некоторыми вероятностями (q1, q2). Аналогично отмечаем на оси ОУ точку -1, а на параллельной ей оси – точку 2 и соединяем отрезком. Получаем линию, показывающую, сколько, в среднем, получает игрок В, если А выбрал стратегию А2. Точно также для А3 и А4.

Для игрока В надо выбрать верхнюю границу, так как он должен рассчитывать, что А выберет ту стратегию, которая соответствует наибольшему проигрышу для игрока В. На рисунке 1 это ломанная А3КА2, выделенная толстой линией. Игроку В следует выбрать ту смешанную стратегию, которая соответствует наименьшему проигрышу для В – точка К. Это точка пересечения прямых, соответствующих стратегиям А3 и А2. Выпишем уравнения этих прямых.

Прямая (А3 А3) проходит через точки с координатами (0;2) и (1;-4). Уравнение этой прямой запишется в следующем виде:


Уравнение прямой (А2 А2), проходящей через точки (0;-1) и (1;2), запишется в следующем виде:


Рисунок 1 –Графическое решение



Точка К – точка пересечения этих прямых, имеет координаты, удовлетворяющие системе:



Решение системы:

Следовательно, цена игры ν = 0, оптимальная стратегия для игрока В:


Для игрока А, стратегии А1 и А4 будут не активными, игроку А не выгодно их использовать. Максимально возможный выигрыш, равный цене игры ν = 0, игрок А будет получать, используя стратегии А2 и А3. Найдем оптимальную смешанную стратегию для игрока А из следующей системы, учитывая, что А1 и А4 не активные стратегии, то есть р1 = р4 = 0:



Ответ: Цена игры ν = 0, оптимальные стратегии игроков


3. Решить геометрически следующую задачу линейного программирования:


при ограничениях:

Решение:

Построим область ограничений. Строим прямую (1): x1 – 4x2 - 4 = 0 по двум точкам, координаты которых удовлетворяют уравнению: (8; 1), (4; 0), как показано на рисунке 2. Проверяем, какая полуплоскость удовлетворяет неравенству , для этого подставим значение произвольной точки (0; 0) в это неравенство, получим - выполняется. Аналогичным способом строим прямые (2): и (3): , выделяем «бородой» области значений x1, x2, удовлетворяющие условиям и . На рисунке 2 изображена область, удовлетворяющая представленной в условиях задачи системе. Заметим, что и одно из неравенств системы - , тогда, очевидно, функция F принимает значения интервала , но , тогда Fmax = .

Ответ: Fmax = .


Рисунок 2 – Графическое решение



4. Для выпуска двух видов продукции А и В предприятие использует 4 вида ресурсов, все данные представлены в следующей таблице:


Вид ресурса

Расход ресурсов для выпуска одного изделия

Наличие ресурса

А

В

Рабочая сила

1

3

3

Сырье

6

3

24

Оборудование

2

5

20

Производственные ресурсы

2

2

10


Прибыль от реализации единицы продукции А и В составляет 50 и 70 ДЕ, соответственно. Предприятие может нанять людей на работу, а увольнять людей не разрешается. Составить план выпуска продукции, чтобы прибыль от ее реализации была максимальной. Сколько человек придется нанять?

Решение:

Обозначим x1, x2 – число единиц продукции соответственно А и В, запланированных к производству. По условию для их изготовления потребуется (1∙ x1 + 3∙ x2) единиц ресурса «Рабочая сила», (6∙ x1 + 3∙ x2) единиц ресурса «Сырье», (2∙ x1 + 5∙ x2) единиц ресурса «Оборудование», (2∙ x1 + 2∙ x2) единиц ресурса «Производственные ресурсы». Так как потребление всех этих видов ресурсов не должно превышать наличие ресурсов, то связь между потреблением ресурсов и их запасами выразится системой неравенств:



где а ≥ 3 и а – целое число (количество работников).

Суммарная прибыль стремиться к максимальному значению:

Все значения x1 и x2 лежат в I четверти, а функция F – луч, исходящий из точки (0; 0) под углом α к оси ОX1, где т.е. - функция прибыли F. Строим графическое решение для неравенств (2): , (3): , (4): , как это показано на рисунке 3.

Максимально возможная прибыль из графического решения в точке К, координаты которой находим из системы:

С учетом, x1, x2 – целые числа (только конечный продукт можно продать и получить прибыль), находим: при х1 = х2 = 2 возможно получение максимальной прибыли Подставив х1 = х2 = 2 в неравенство (1): , получим ,т.е. а = 8. Необходимо дополнительно нанять 8 – 3 = 5 человек.

Ответ: Максимально возможная прибыль 240 ДЕ возможна при производстве изделий А – 2шт. и изделий В – 2 шт., при этом придется дополнительно нанять 5 работников.


Рисунок 3 – Графическое решение


5. Построить граф состояний следующего случайного процесса: система состоит из двух аппаратов по продаже билетов, каждый из которых в случайный момент времени может быть либо занятым, либо свободным.


Решение:

Система может находиться в четырех состояниях, так как у каждого аппарата по продаже билетов есть два состояния (быть занятым или свободным). Пусть S0 – оба аппарата заняты; S1 – 1-ый занят, 2-ой свободен; S2 – 1-ый свободен, 2-ой занят; S3 – оба аппарата свободны. Построим граф состояний, отметив на нем все возможные состояния кругами, а возможные переходы из состояния в состояние обозначим стрелками. Получаем, что переход из S0 в S3 возможен либо через S1, либо через S2, либо напрямик, как показано на рисунке 4.


Рисунок 4 – Граф состояний аппаратов по продаже билетов


6. Найти предельные вероятности для системы S, граф которой изображен на рисунке.



Решение:

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют. Их можно найти из уравнений Колмогорова, составив систему по данному размеченному графу состояний, по следующему правилу:






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.