Особенности экономико-математического моделирования (183839)

Посмотреть архив целиком

























Экономико-математические методы

Вариант №40 (δ = 542)







Задание 1. Производственные функции



1.1 Дайте понятия производственной функции и изокванты. Что означает взаимозаменяемость ресурсов?



Пусть для производства некоторого продукта в количестве y единиц используются различные ресурсы: , ,...,выраженные в соответствующих единицах. Если принята закономерность получения продукта y из ресурсов =(, ,...,)т.е. если в явном виде выражена зависимость y=f(, то такая функция f(, называется производственной.

Пусть зафиксировано некоторое число . Множество в n-мерном пространстве, определяемое равенством



Q={:f(=}



называется изоквантой функции f( уровня

Из самого определения изокванты следует, что если Q, Q, то ресурсы и обеспечивают производство одного и того же количества продукта , т. е. являются в этом смысле взаимозаменяемыми. Для организаторов производства знание изокванты позволяет недостаток одних ресурсов компенсировать увеличением других.



1.2 Производственная функция для райпо имеет вид



f(X1,X2)=10,



где f – товарооборот (млн руб.); – производственная площадь (тыс. ); – численность работников (сотни чел.). Рассмотрите изокванту уровня



=и найдите на ней точку C1с координатами , , где



=



и точку С2 с координатами , , где



=.



Сделайте вывод о возможности замены ресурсов , ,)и , )

Полученные результаты изобразите графически.

Решение:

Из дано число δ = 542. Тогда уравнение изокванты:

10=, (

Возведя обе части в квадрат и разделив их на 100, получим:

Найдем координаты точки C1 (рис. 2).



Рис. 2. Изокванта



Так как =, то из уравнения изокванты находим. Аналогично находим координаты точки C2. Так как

Итак, 145 работников райпо, используя 4,42 тыс. м2 производст-венной площади, обеспечат товарооборот млн руб., и такой же товарооборот могут обеспечить 242 работника райпо, используя площадь 2,42 тыс. м2.







Задание 2. Функция покупательского спроса



2.1 Дайте понятия малоэластичных, среднеэластичных и высокоэластичных товаров. Какие товары называются взаимозаменяемыми?



Классификация товаров на основе прямой и перекрестной эластичности сводится к следующему:

если , то i-й товар называется малоэластичным;

если, то i-й товар называется среднеэластичным;

если, то i-й товар называется высокоэластичным.

Если увеличение цены на j-й товар приводит к уменьшению спроса на i-й и наоборот, то эти товары называются взаимодополняемыми.



2.2 Произведите классификацию товаров по следующей таблице эластичностей



Товар

1-й

2-й

3-й

1-й




2-й




3-й






Пусть δ = 543. Тогда таблица эластичностей принимает вид:



Товар

1-й

2-й

3-й

1-й

0,68

0,085

0,285

2-й

0,07

0,98

0,215

3-й

0,23

0,238

1,38



Так как, то 1-й товар малоэластичный;

так как, то 2-й товар среднеэластичный;

Так как, то товар малоэластичный;

Так как, то товар малоэластичный;

так как, то 3-й товар высокоэластичный.

Поскольку то 1-й и 3-й товары взаимозаменяемые.

Поскольку то товары взаимозаменяемые.







Задание 3. Межотраслевой баланс



3.1 Дайте определение коэффициентов прямых затрат. Где они могут быть использованы?



Отношение называется коэффициентом прямых затрат, означает объем продукции i-й отрасли, который требуется передать j-й отрасли, чтобы последняя произвела единицу своей валовой продукции.

Модель межотраслевого баланса может использоваться в планировании деятельности отраслей материального производства. Если технологии производства продуктов не меняются, то коэффициенты прямых затрат остаются неизменными.



3.2 За отчетный период имел место следующий баланс продукции



=++

=++=300

=

==220

=

=



а) вычислите коэффициенты прямых затрат;

б) вычислите плановый объем валовой продукции отраслей при плане выпуска конечной продукции:при условии неизменности технологии производства.

Решение:

=208

=158

=308

=258+158+300=716

=208+308+220=736

а. Вычислим коэффициенты прямых затрат:



===0,36

===0,290

===0,214

===0,418



б. Вычислим плановый объем валовой продукции отраслей:



0,64

=+

=546,875+0,334

-0,290(546,875+0,334)+0,582=250

0,582-0,096=250+158,59



=840,72

=546,875+0,334

Таким образом,=827,67 – плановый объем валовой продукции первой отрасли;

плановый объем валовой продукции второй отрасли.







Задание 4. Системы массового обслуживания



4.1 Дайте описание входящего потока требований и каналов обслуживания. Какие экономические показатели характеризуют работу СМО?



К системам массового обслуживания относятся магазины, рестораны, автозаправочные станции, аэродромы, автоматизированные телефонные станции и многие другие объекты.

Для входящего потока требований предположим, что интервалы между поступлениями соседних требований есть случайная величина X с показательным законом распределения, т. е. ее интегральная функция F(t) имеет вид:



F(t)=1-



Число λ (треб./ед. времени) называется интенсивностью входящего потока, она показывает, сколько в среднем требований поступает в единицу времени.

Будем считать, что очередь не ограничена и требования обслуживаются в порядке поступления.

Для обслуживания примем предположения о том, что все n каналов одинаковы и для каждого из них время обслуживания одного требования есть случайная величина Y, распределенная по показательному закону, т. е. ее интегральная функция имеет вид:



F(t)=1-, t



Число μ (треб./ед. времени) называется интенсивностью обслуживания, она показывает, сколько требований обслуживается в единицу времени.

Обозначим



α =



(α – параметр загрузки СМО) и предполо-жим, что выполняется условие стационарности α λ (8)

Условие (8) означает, что интенсивность входящего потока меньше, чем суммарная интенсивность обслуживания.



4.2 В магазине самообслуживания работают две кассы с интенсивностью μ=(δ=300)/100 треб./мин. каждая. Входящий поток требований имеет интенсивность λ=(δ+400)/100 треб./мин. Рассчитайте долю времени простоя касс и среднюю длину очереди. Если интенсивность входящего потока станет равной λ= (700-δ)/10 треб./мин., то будет ли выполнено условие стационарности? Если будет, то во сколько раз увеличится средняя длина очереди?



Решение:

Пусть δ=542. Тогда μ=8,43 треб./мин., а первоначальное значение λ равно 9,42 треб./мин.

α=.

Если интенсивность λ станет равной треб./мин., то в силу неравенства 15,8<2 условие стационарности СМО выполнено, и можно вычислить среднюю длину очереди:

α

Итак, при интенсивности обслуживания μ=8,42 треб./мин. и интенсивности входа λ=9,42 треб./мин. доля времени простоя касс составляет 28,3% времени, а средняя длина очереди равна 0,508 треб. Если же интенсивность входа станет равной 15,8 треб./мин., то средняя длина очереди увеличится в 22,75 раза.







Задание 5. Модели управления запасами



5.1 Сформулируйте задачу оптимального управления запасами



Задача оптимального управления запасами будет формулироваться следующим образом: определить объем q заказываемой партии товара, при котором достигается минимум затрат на складские операции в единицу времени в предположении, что темп поступления заказанного товара превышает норму спроса на него.



5.2 Дайте экономическую интерпретацию предельной арендной плате



Экономически λ интерпретируется как предельная (максимальная) арендная плата за использование дополнительных складских емкостей. Если фактическая арендная плата α меньше либо равна предельной λ т. е. α≤λ, то аренда выгодна, и объем заказываемой партии вычисляется по формуле (10)



q=.



Если же α>λ, то аренда невыгодна, и тогда объем заказа надо уменьшать, он рассчитывается в этом случае по формуле (13)



q= .



5.3 Сделайте вывод о целесообразности аренды дополнительных складских емкостей или о необходимости сокращения объема заказываемой партии товара с учетом имеющихся складских емкостей при сравнении фактической α и предельной λ арендной платы за хранение единицы товара в единицу времени



α=

λ=



Решение:

α= , λ=

α λ

Вывод: фактическая арендная плата больше предельной арендной платы. Следовательно аренда дополнительных складских емкостей невыгодна. Объем заказываемой партии следует сократить до таких пределов, чтобы возникший товарный запас можно было разместить в имеющихся складских емкостях.







Задание 6. Модели теории игр



6.1 Объясните смысл элементов платежной таблицы и способы выбора стратегий с позиций крайнего пессимизма, крайнего оптимизма и оптимизма-пессимизма



Предлагается выбирать стратегию, соответствующую величине H.

При λ=0 H=max, и этот подход превращается в подход с позиции крайнего пессимизма.

При λ=1 H=max1, и этот подход превращается в под-ход с позиции крайнего оптимизма.

Величина H при изменении λ от 0 до 1 непрерывно изменяется от α до β, и выбор некоторого промежуточного λ соответствует сочетанию пессимизма и оптимизма при выборе стратегии. Возьмем, например, λ=0,5 и вычислим





а затем выберем наибольшее γ=max()

Стратегию, на которой достигается величина γ, будем называть соответствующей подходу с позиции пессимизма-оптимизма.



6.2 Выберите стратегии с позиций крайнего пессимизма, крайнего оптимизма и оптимизма-пессимизма для следующей платежной матрицы:






620-

610-

620-

630-

10

640-


Случайные файлы

Файл
28578.rtf
130643.rtf
131118.rtf
19846.rtf
90462.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.