Экономический анализ характеристик взаимосвязи (183827)

Посмотреть архив целиком

Министерство образования и науки Украины

ДонГТУ





Кафедра экономической кибернетики



Контрольная работа

по предмету «Эконометрия»

Вариант № 1







Выполнил:

Ст.гр. МВД-05-1

Бурмистрова А,

Проверила:

Якимова Л.П.






Алчевск 2008


Условие задачи


По статистическим данным для 9 предприятий общественного питания за год построить линейную двухфакторную модель, которая характеризует зависимость между уровнем рентабельности (%), относительным уровнем затрат оборота (%) и трудоемкостью предприятий. Прогнозные значения факторов выбрать самостоятельно. Сделать экономический анализ характеристик взаимосвязи.


Исходные данные

п/п

Рентабельность

Затраты оборота

Трудоемкость

1

2,48

16,8

117,7

2

2,62

16,9

97,5

3

2,88

16,1

113,7

4

2,68

15

122,3

5

2,52

18

102

6

2,74

17,2

106,7

7

2,56

17,1

108,5

8

2,68

16,4

114,3

9

2,55

16,7

94,3



Построение и анализ классической многофакторной линейной эконометрической модели


1. Спецификация модели


1.1 Идентификация переменных


Многофакторная линейная эконометрическая модель устанавливает линейную зависимость между одним показателем и несколькими факторами.

Y – рентабельность – результирующий показатель;

Х1 – затраты оборота – показатель-фактор;

Х2 – трудоемкость – показатель-фактор.


Таблица 1 – Исходные данные и элементарные превращения этих данных для оценки модели.

п/п

Y

X1

X2

Y*X1

Y*X2

X1*X2

Y*Y

X1*X1

X2*X2

1

2,48

16,8

117,7

41,664

291,896

1977,4

6,1504

282,24

13853,29

2

2,62

16,9

97,5

44,278

255,45

1647,8

6,8644

285,61

9506,25

3

2,88

16,1

113,7

46,368

327,456

1830,6

8,2944

259,21

12927,69

4

2,68

15

122,3

40,2

327,764

1834,5

7,1824

225

14957,29

5

2,52

18

102

45,36

257,04

1836

6,3504

324

10404

6

2,74

17,2

106,7

47,128

292,358

1835,2

7,5076

295,84

11384,89

7

2,56

17,1

108,5

43,776

277,76

1855,4

6,5536

292,41

11772,25

8

2,68

16,4

114,3

43,952

306,324

1874,5

7,1824

268,96

13064,49

9

2,55

16,7

94,3

42,585

240,465

1574,8

6,5025

278,89

8892,49

23,71

150,2

977

395,311

2576,513

16266

62,5881

2512,16

106762,64

Средн.

2,63444

16,6889

108,555556

43,92344

286,27922

1807,3

6,9542333

279,129

11862,516



1.2 Оценка тесноты связи между показателем Y и факторами Х1 и Х2, а также межу факторами. (Диаграмма рассеяния).


Связь тесная обратная.


Связь обратная.


Связь тесная прямая.


Прозноз


1)Отношение Х1 и У

r=-0,5



2)Отношение Х1 и Х2

r=-0,4



3)Отношение У и Х2

r=0,5




1.2.1 Парные коэффициенты корреляции, корреляционная матрица

Для оценки тесноты связи между показателем Y и факторами Х1 и Х2, а также между факторами вычисляем парные коэффициенты корреляции, а потом составляем корреляционную матрицу, учитывая ее особенности:

- корреляционная матрица является симметричной;

- на главной диагонали размещены единицы.

Парные коэффициенты корреляции вычисляем по формулам:



- среднее квадратическое отклонение показателя Y;

- среднее квадратическое отклонение фактора X1;

- среднее квадратическое отклонение фактора X2;

- дисперсия показателя Y;

- дисперсия показателя X1;

- дисперсия показателя X2;

- коэффициент ковариации признаков Y и Х1;

- коэффициент ковариации признаков Y и Х2;

- коэффициент ковариации признаков X1 и Х2;


Таблица 2 – Расчет парных коэффициентов корреляции

По формуле

Мастер

функций

Дисперсия У

Ср. кв. отклон У

Дисперсия У

Ср. кв. отклон У

0,013935802

0,11805

0,013935802

0,11805

Дисперсия Х1

Ср. кв. отклон Х1

Дисперсия Х1

Ср. кв. отклон Х1

0,609876543

0,780945928

0,609876543

0,780945928

Дисперсия Х2

Ср. кв. отклон Х2

Дисперсия Х2

Ср. кв. отклон Х2

78,20691358

8,843467283

78,20691358

8,843467283

Ковариация УХ1

Ковариация УХ1

-0,042506173

-0,042506173

Ковариация УХ2

Ковариация УХ2

0,295641975

0,295641975

Ковариация Х1Х2

Ковариация Х1Х2

-4,327160494

-4,327160494


Коэффициэнты парной корреляции

rух1

-0,461068071


rух1

-0,461068

rух2

0,283189751


rух2

0,28319

rух1х2

-0,626555382


rух1х2

-0,626555


Корреляционная матрица

1

-0,46107

0,28319

-0,46107

1

-0,62656

0,28319

-0,62656

1


1.2.2 Коэффициенты частичной корреляции

В многомерной модели коэффициенты парной корреляции измеряют нечистую связь между факторами и показателем. Поэтому при построении двухфакторной модели целесообразно оценить связь между показателем и одним фактором при условии, что влияние другого фактора не считается. Для измерения такой чистой связи вычисляют коэффициенты частичной корреляции.

Формула частичного коэффициента корреляции между признаками Хi и Xjимеет вид:



где - алгебраические дополнения соответствующих элементов корреляционной матрицы.

Во время построения двухфакторной модели коэффициенты частичной корреляции рассчитываются по формулам:


Случайные файлы

Файл
129593.rtf
136406.rtf
102962.rtf
Шпаргалка.doc
66178.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.