Математические методы и модели в экономике (183790)

Посмотреть архив целиком

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

КАМСКАЯ ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКАЯ АКАДЕМИЯ

КАФЕДРА ЭОУП








КОНТРОЛЬНАЯ РАБОТА

по дисциплине "Математические методы и модели в экономике"




Выполнил: студент гр. 4381-С

Кустовский Р.Г.

Проверил: доцент

Коврижных О.Е.






г. Набережные Челны

2010


ЗАДАНИЕ 1


Построить одноиндексную математическую модель задачи линейного программирования. В модели надо указать единицы измерения всех переменных, целевой функции и каждого ограничения

Цех мебельного комбината выпускает трельяжи, трюмо и тумбочки под телевизоры. Норма расхода материала в расчете на одно изделие, плановая себестоимость, оптовая цена предприятия, плановый ассортимент и трудоемкость единицы продукции приведены в таблице. При этом, запас древесно-стружечных плит, досок еловых и березовых 92, 33 и 17 куб.м. соответственно. Плановый фонд рабочего времени 19100 человеко-часов.

Исходя из необходимости выполнения плана по ассортименту и возможности его перевыполнения по отдельным (и даже всем) показателям, постройте модель, на основе которой можно найти план производства, максимизирующий прибыль.


Показатели

Изделия

трельяж

трюмо

тумбочка

Норма расхода материала, куб.м.:




древесно-стружечные плиты

0,042

0,037

0,028

доски еловые

0,024

0,018

0,081

доски березовые

0,007

0,008

0,005

Трудоемкость, чел.-ч.

7,5

10,2

6,7

Плановая себестоимость, ден.ед.

98,81

65,78

39,42

Оптовая цена предприятия, ден.ед.

97,10

68,20

31,70

Плановый ассортимент, шт.

450

1200

290


Решение:

В условии задачи сформулирована цель получение максимальной прибыли при необходимости выполнения плана по ассортименту и возможности его перевыполнения. Поэтому, искомыми величинами, а значит, и переменными задачи являются количество произведенной продукции:

Х1 - количество изготовленных трельяжей.

Х2 - количество изготовленных трюмо.

Х3 - количество изготовленных тумбочек.

Поэтому целевой функцией будет математическое выражение, в которой суммируется прибыль от изготовления каждой продукции. Прибыль является разность между себестоимостью и оптовой ценой продукции.


L = (97,10 – 98,81) *Х1 + (68,2 – 65,78)* Х2 +(31,7 – 39,42)* Х3 =

= –1,71 * Х1+ 2,42 * Х2 – 7,72 * Х3 max


Условием является то, что сумма расхода материалов не должно быть больше имеющихся материалов, а так же обязательное условие - выполнение плана. Таким образом, математическая модель задачи будет иметь вид:



ЗАДАНИЕ 2


Решить одноиндексную задачу линейного программирования графическим методом.



Построим следующие прямые:


х1 + х2 = 2 (1)

1 + х2 = 4 (2)

х1 + 2х2 = 8 (3)

х1 = 6 (4)


Для этого вычислим координаты прямых:



Заштрихуем полуплоскости, определяемые и разрешаемые каждым из ограничений неравенств. Определим область допустимых решений , многоугольник АВCDEF.

Построим целевую функцию по уравнению



Нижняя точка пересечения целевой функции и многоугольника – это точка минимума целевой функции.

Найдем координаты точки D ( 2; 0 ).

Минимальное значение целевой функции


L(Х) = L(D) = 1*2 + 3*0 = 2


ЗАДАНИЕ 3


Задача сетевого планирования

По данным варианта необходимо:

  1. построить сетевую модель, рассчитать временные параметры событий (на рисунке) и работ (в таблице);

  2. определить критические пути модели;

  3. оптимизировать сетевую модель по критерию "минимум исполнителей" (указать какие работы надо сдвигать и на сколько дней, внесенные изменения показать на графиках привязки и загрузки пунктирной линией).


Название

работы

Нормальная

длительность

Количество

исполнителей

Вариант 2 (N=11 человек)

  1. D - исходная работа проекта;

  2. Работа E следует за D;

  3. Работы A, G и C следуют за E;

  4. Работа B следует за A;

  5. Работа H следует за G;

  6. Работа F следует за C;

Работа I начинается после завершения B, H, и F

A

3

5

B

4

7

C

1

1

D

4

3

E

5

2

F

7

3

G

6

6

H

5

1

I

8

5


  1. Построим сетевую модель, рассчитаем временные параметры событий ( на рисунке) и работ ( в таблице).



Сетевой график


Код

Название работы

t

Трн

Тро

Тпн

Тпо

Rп

1-2

D

4

0

4

0

4

0

0

2-3

E

5

4

9

4

9

0

0

3-5

A

3

9

12

13

16

4

0

3-6

G

6

9

15

9

15

0

0

3-4

C

1

9

10

12

13

3

0

5-7

B

4

12

16

16

20

4

4

6-7

H

5

15

20

15

20

0

0

4-7

F

7

10

17

13

20

3

3

7-8

I

8

20

28

20

28

0

0


В таблице использованы следующие сокращения:

t - длительность работы

Трн - ранний срок начала работы

Тро - ранний срок окончания работы

Тпн - поздний срок начала работы

Тпо - ранний срок окончания работы

Rп - полный резерв времени

- свободный резерв времени

2. Определим критические пути модели

Критический путь – 1,2,3,6,7,8 = 28 суток - максимальный по продолжительности полный путь.

3. Оптимизируем сетевую модель по критерию "минимум исполнителей" (укажем какие работы надо сдвигать и на сколько дней, внесенные изменения показать на графиках привязки и загрузки пунктирной линией).


Построим график привязки для следующих исходных данных.

Название работы

Количество исполнителей

D

1-2

4

3

E

2-3

5

2

A

3-5

3

5

G

3-6

6

6

C

3-4

1

1

B

5-7

4

7

H

6-7

5

1

F

4-7

7

3

I

7-8

8

5


При оптимизации использования ресурса рабочей силы сетевые работы чаще всего стремятся организовать таким образом, чтобы:

  • количество одновременно занятых исполнителей было минимальным;


Случайные файлы

Файл
30881.rtf
172346.doc
869-1.rtf
58384.rtf
9416-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.