Математическое моделирование в управлении (183757)

Посмотреть архив целиком

Министерство образования и науки Украины

Приднепровская государственная академия

строительства и архитектуры


Кафедра прикладной математики







Математическое моделирование и решение задач оптимального управления


Тема: Математическое моделирование в управлении













Днепропетровск

2009


Введение


Экономические процессы характеризует большое число параметров, взаимосвязь и взаимное влияние которых определяют состояние этой, с точки зрения системного анализа, сложной динамической системы и возможности перехода ее в другие состояния. В этой ситуации решения по оптимальному управлению необходимо принимать на основании многомерного статистического анализа стохастической, неполной информации. Всестороннее изучение деятельности предприятий дает возможность фиксировать значения таких показателей, как производительность труда, индекс снижения себестоимости, рентабельность одновременно с показателями, которые могут оказывать влияние на перечисленные результирующие показатели. К таким воздействующим показателям можно отнести трудоемкость единицы продукции, удельный вес рабочих в составе промышленно-производственного персонала, коэффициент сменности оборудования, премии, фондоотдача и другие. Однако следует учесть, что показатели могут быть взаимосвязаны и, следовательно, могут опосредствовано оказывать влияние на результирующие показатели.

Рассмотрение поведения подобных сложных систем, характерной особенностью которых является наличие управления, присуще системному подходу. Основным методом исследования систем в рамках системного подхода является метод математического моделирования, базирующийся на использовании средств компьютерной техники. Под математическим моделированием понимают способ исследования различных явлений, процессов путем исследования явлений, имеющих разное физическое содержание, но описываемых одинаковыми математическими соотношениями.

Математической моделью реальной системы называется ее описание на каком-либо формальном языке, позволяющее выводить суждения о некоторых чертах поведения этой системы при помощи формальных процедур. Математическая модель может представлять собой функциональные зависимости или графики, уравнения; таблицы или графики, описывающие движение систем и переходы их из одних состояний в другие. Другими словами, математическая модель – это отражение оригинала (системы) в виде функций, уравнений, неравенств, цифр и т.д. Математическая модель – это приближенное описание системы и ее поведения с помощью математической символики. Математическое моделирование – мощный метод познания, а также прогнозирования и управления. Математическое моделирование занимает ведущее место среди других методов исследования, особенно благодаря компьютерной технике, возможности которой позволяют исследование поведения системы осуществлять с помощью машинного эксперимента.

В настоящее время трудно представить себе исследование и прогнозирование экономических явлений, без использования эконометрического моделирования на основе статистических данных, регрессионного анализа и других методов, опирающихся на теорию вероятностей. Экономические законы все более усложняются и, следовательно, в соответствии с законами развития динамических систем должен усиливаться статистический характер законов, их описывающих, который позволяет учитывать влияние случайных факторов.

Таким образом, для выработки оптимального управления сложной системой, каковой является экономический процесс, необходим системный анализ и построение математической модели, которая должна отражать связи между отдельным зависимым параметром и группой влияющих на него показателей, а также связи внутри этой группы, что возможно осуществить методами множественного корреляционного и регрессионного анализа статистических данных. Итак, решение задачи оптимального управления состоит из таких этапов:

  • многомерный экономико-статистический анализ показателей производственно–хозяйственной деятельности предприятий;

  • составление математической модели задачи оптимизации управления деятельностью предприятий на основании корреляционного и регрессионного анализа статистических данных;

  • решение задачи оптимизации, количественное обоснование прогнозируемого результата и рекомендации по его достижению.

Многомерный статистический анализ выполняется средствами надстройки Excel «Пакет анализа». Решение нелинейной задачи оптимизации выполняется средствами надстройки Excel «Поиск решения».

Для успешного выполнения задания приводятся необходимые сведения из теории вероятностей и математической статистики, и устанавливается связь между параметрами теоретического и статистического распределения изучаемых факторных и результативных признаков.


I. Статистический анализ в Excel


§ 1.1 Очистка информации от засорения


При статистическом анализе экономической информации принято считать, что экономические показатели подчиняются нормальному закону распределения. Однако на практике это не всегда верно. Наблюдаются отклонения как односторонние, так и двусторонние. Во избежание искажения значений характеристик распределения при обработке информации необходимо очистить ее от засорения случайными отклонениями. Метод выявления аномальных наблюдений и их удаления из совокупности при обработке многомерной статистической информации может привести к отбрасыванию слишком большого количества точек наблюдения. Известны более четко обоснованные методы обнаружения засорения: метод Смирнова–Граббса проверки максимального наблюдения, критерий Граббса для обнаружения одного экстремального наблюдения, критерий исключения нескольких грубых ошибок как обобщение критерия Граббса. Все они применяются к упорядоченной совокупности (вариационному ряду):


(N25).


Для проверки максимального и минимального значений на наличие грубой ошибки используются критерии


и ,


где , , .

При N>25 экстремальные значения могут быть проверены по критерию S:


,


где – стандартное отклонение, определенное для всей выборки ;

предполагаемый выброс.

При Sрасч < Sкр гипотеза H0: – выброс отвергается, в противном случае экстремальное значение считается грубой ошибкой и из дальнейшего рассмотрения исключается. Критические значения критерия S определяются по таблице . При уровне значимости Sкр так зависит от объема выборки N : значениям N = 30 ; 50 ; 100 ; 1000 соответствуют Sкр = 2,929 ; 3,082 ; 3,283 ; 3,884 .

Парный корреляционный и регрессионный анализ удобно выполнять средствами Excel и надстройки «Пакет анализа» (в меню – Сервис– Анализ данных ).

В данной работе я выполяю статистический анализ совокупности таких показателей производственно-хозяйственной деятельности предприятий (Приложение 1): производительность труда (среднегодовая выработка продукции на одного работника), тыс. грн. Y1, премии и вознаграждения на одного работника, % X8, среднегодовая численность ППП, чел.X11, среднегодовая стоимость основных производственных фондов(ОПФ), тыс. грн. X12, среднегодовой фонд заработной платы ППП, тыс. грн. X13, непроизводственные расходы, %X17.

Выполняю проверки статистических данных на «засорение»:

копирую все значения показателей на чистый лист;

упорядочиваю их по возрастанию, выделяю весь столбец без заголовка и нажимаю на панели кнопку сортировки ;

устанавливаю курсор под последним значением и ввожу функцию Статистическая

СРЗНАЧ, а затем СТАНДОТКЛ .

вычисляю значение статистики Sрасч по найденным характеристикам для наибольшего значения, которое нужно подставить в формулу вместо x1 и проверить гипотезу H0 : наибольшее (последнее в столбце) значение – выброс;

если Sрасч > Sкр (0,05; 50) = 3,082 , это значение является выбросом, и необходимо проверить предыдущее значение , только при этом следует заново определить среднее значение и стандартное отклонение, но уже исключив выброс, как это и выполнено в приведенной таблице;

проверку на выброс продолжаю до первого значения, для которого гипотеза H0 окажется неправдоподобной, т.е. для которого значение Sрасч окажется меньше Sкр;

такую же проверку выполняю начиная с наименьшего (первого в столбце) значения, помня о том, что критерий S имеет двустороннюю критическую область, и поэтому следует рассматривать модуль Sрасч.

Такие проверки выполняю для всех показателей. В итоге на новый лист переношу исходные статистические данные, и исключить полностью каждую строку, в которой есть выброс хотя бы одного из показателей. Весь последующий статистический анализ провожу только по очищенным данным. Данные сохраняю в Excel на листе под названием «Очистка от засорения».


§ 1.2 Проверка закона распределения


Предварительный анализ статистических данных заключается в проверке соответствия их предположению о нормальном распределении параметров, для чего строю гистограмму и определяю выборочные числовые характеристики. Для построения гистограммы выполняю такую последовательность действий:

размещаю на рабочем листе Excel статистические данные наблюдений (без выбросов);

Сервис – Анализ данных – Гистограмма (рис.1);


Рис.1.Выбор инструмента анализа.


- в появившемся диалоговом окне Гистограмма ввожу в поле Входные данные интервал (диапазон) ячеек, содержащий исходные данные, и отмечаю поле Метки, т.к., таблица данных имеет заголовки;


Случайные файлы

Файл
69164.rtf
referat.doc
28262.rtf
27577.rtf
55914.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.