Парная регрессия (183596)

Посмотреть архив целиком















Контрольная работа

по теме: "Парная линейная регрессия"



Данные, характеризующие прибыль торговой компании "Все для себя" за первые 10 месяцев 2004 года (в тыс. руб.), даны в следующей таблице:


январь

февраль

март

апрель

май

июнь

июль

август

сентябрь

октябрь

367

418

412

470

485

470

525

568

538

558


В контрольной работе с использованием табличного процессора Ехсеl необходимо выполнить следующие вычисления и построения:

1. Построить диаграмму рассеяния.

2. Убедится в наличии тенденции (тренда) в заданных значениях прибыли фирмы и возможности принятия гипотезы о линейном тренде.

3. Построить линейную парную регрессию (регрессию вида ). Вычисление коэффициентов b0, b1 выполнить методом наименьших квадратов.

4. Нанести график регрессии на диаграмму рассеяния.

5. Вычислить значения статистики F и коэффициента детерминации R2. Проверить гипотезу о значимости построенного уравнения регрессии.

6. Вычислить выборочный коэффициент корреляции и проверить гипотезу о ненулевом его значении.

7. Вычислить оценку дисперсии случайной составляющей эконометрической модели.

8. Проверить гипотезы о значимости вычисленных коэффициентов b0, b1 .

9. Построить доверительные интервалы для коэффициентов b0, b1.

10. Построить доверительные интервалы для дисперсии случайной составляющей эконометрической модели.

11. Построить доверительную область для условного математического ожидания М()( по оси Х откладывать месяцы январь - декабрь). Нанести границы этой области на диаграмму рассеяния.

12. С помощью линейной парной регрессии сделать прогноз величины прибыли на ноябрь и декабрь месяц и нанести эти значения на диаграмму рассеяния. Сопоставить эти значения с границами доверительной области для условного математического ожидания М() и сделать вывод о точности прогнозирования с помощью построенной регрессионной модели.

Решение.

Используя исходные данные, строим диаграмму рассеяния:



На основе анализа диаграммы рассеяния убеждаемся в наличии тенденции увеличения прибыли фирмы и выдвигаем гипотезу о линейном тренде.

Полагаем, что связь между факторами Х и У может быть описана линейной функцией . Решение задачи нахождения коэффициентов b0, b1 основывается на применении метода наименьших квадратов и сводится к решению системы двух линейных уравнений с двумя неизвестными b0, b1 :


b0 n + b1 Уxi = Уyi,

b0 Уxi + b1 Уxi2 = Уxiyi.



Составляем вспомогательную таблицу:


х

y

x2

ху

y2

1

1

367

1

367

134689

2

2

418

4

836

174724

3

3

412

9

1236

169744

4

4

470

16

1880

220900

5

5

485

25

2425

235225

6

6

470

36

2820

220900

7

7

525

49

3675

275625

8

8

568

64

4544

322624

9

9

538

81

4842

289444

10

10

558

100

5580

311364

сумма

55

4811

385

28205

2355239


Для нашей задачи система имеет вид:



Решение этой системы можно получить по правилу Крамера:



Получаем:

, .

Таким образом, искомое уравнение регрессии имеет вид:


y =364,8 + 21,145x.


  1. Нанесем график регрессии на диаграмму рассеяния.



  1. Вычислим значения статистики F и коэффициента детерминации R2. Коэффициент детерминации рассчитаем по формуле R2 = rxy2 = 0,9522 = 0,907. Проверим адекватность модели (уравнения регрессии) в целом с помощью F-критерия. Рассчитаем значение статистики F через коэффициент детерминации R2 по формуле:





Получаем: . Зададим уровень значимости б =0,01, по таблице находим квантиль распределения Фишера F0,01;1;8 = 11,26, где 1 – число степеней свободы.


Fфакт. > F0,01;1;8, т.к. 78,098 > 11,26.


Следовательно, делаем вывод о значимости уравнения регрессии при 99% - м уровне значимости.

  1. Вычислим выборочный коэффициент корреляции и проверим гипотезу о ненулевом его значении.

Рассчитаем выборочный коэффициент корреляции по формуле:



Получаем:

Проверка существенности отличия коэффициента корреляции от нуля проводится по схеме: если , то гипотеза о существенном отличии коэффициента корреляции от нуля принимается, в противном случае отвергается.

Здесь t1-б/2,n-2 – квантиль распределения Стьюдента, б - уровень значимости или уровень доверия, n – число наблюдений, (n-2) – число степеней свободы. Значение б задается. Примем б = 0,05, тогда t1-б/2,n-2 = t0,975,8 = 2,37. Получаем:

.

Следовательно, коэффициент корреляции существенно отличается от нуля и существует сильная линейная связь между х и у.

С использованием табличного процессора Ехсеl проведем регрессионную статистику:

Вывод итогов:


Регрессионная статистика

Множественный R

0,952409

R-квадрат

0,907083

Нормированный R-квадрат

0,895468

Стандартная ошибка

21,7332

Наблюдения

10



Дисперсионный анализ




df

SS

MS

F

Значимость F

Регрессия

1

36888,245

36888,25

78,09816

2,119E-05

Остаток

8

3778,6545

472,3318



Итого

9

40666,9


Коэфф.

Станд. ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

364,8

14,846599

24,57128

8,04E-09

330,56368

399,0363

Переменная X 1

21,14545

2,3927462

8,837316

2,12E-05

15,627772

26,66314


Вычисленные значения коэффициентов b0, b1, значения статистики F, коэффициента детерминации R2 выборочного коэффициента корреляции rxy совпадают с выделенными в таблице.

7. Оценка дисперсии случайной составляющей эконометрической модели вычисляется по формуле .

Используя результаты регрессионной статистики, получаем:

.

8. Проверим значимость вычисленных коэффициентов b0, b1 по t-критерию Стьюдента. Для этого проверяем выполнение неравенств:


и ,


где


, , , .


Используем результаты регрессионной статистики:





Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

364,8

14,846599

24,57128

8,04E-09

330,56368

399,0363

Переменная X 1

21,14545

2,3927462

8,837316

2,12E-05

15,627772

26,66314


Получаем: ; Примем б = 0,05, тогда t1-б/2,n-2 = t0,975,8 = 2,37.






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.