Моделирование экономических систем (183534)

Посмотреть архив целиком

Задание 1


Раскрыть сущность экономико-математической модели. Привести классификацию экономико-математических моделей; дать понятие экономико-математического моделирования и рассмотреть его этапы.

С понятием «моделирование экономических систем» (а также математических и др.) связаны два класса задач:

задачи анализа, когда система подвергается глубокому изучению ее свойств, структуры и параметров, то есть исследуется предметная область будущего моделирования.

Задачи, связанные с задачами синтеза (получения ЭММ данной системы).

Модель – изображение, представление объекта, системы, процесса в некоторой форме, отличной от реального существования.

Различают физическое и математическое моделирование.

Классификация моделей:

— вещественные

— символьные

— словесно-описательные

  1. математические

  2. аналитические

    • имитационные

    • структурные

= формальные

= функциональные

Этапы практического моделирования

  1. Анализ экономической системы, ее идентификация и определение достаточной структуры для моделирования.

  2. Синтез и построение модели с учетом ее особенностей и математической спецификации.

  3. Верификация модели и уточнение ее параметров

  4. Уточнение всех параметров системы и соответствие параметров модели, их необходимая валидация (исправление, корректирование).


Задание 3


В качестве примера построим модель оптимального размещения активов для некоторого гипотетического банка, работающего более двух лет, баланс которого приводится в таблицах ниже.

Пассив баланса

Наименование статей баланса

Сумма, млн. руб.

Риск одновременного снятия, %

Средства банков на корреспондентских счетах

5,1

25

Кредиты и депозиты банков (включая НБ РБ)



Кредитные ресурсы, полученные от других банков,

депозиты других банков до востребования

2,8

55

Кредитные ресурсы, полученные от других банков,

и депозиты других банков с договорными сроками

3,4

0

Средства клиентов



Остатки на текущих (расчетных) счетах юридических и

физических лиц

196

25

Вклады (депозиты) юридических и физических лиц:



до востребования

5,8

25

с договорными сроками

85


Прочие пассивы

7,6


Итого пассивов

305,7


Собственный капитал банка

68



Актив баланса

Наименование статей баланса

Сумма, млн. руб.

Доход-ность, %

Степень риска, %

Ликвид-ность, %

Касса и приравненные к ней средства

х1

0

0

100

Средства на корреспондентских счетах в банках





Средства в НБ РБ

х2

0

0

100

Средства в банках стран – членов ОЭСР до востребования

х3

5

30

75

Средства в банках стран, не являющихся членами ОЭСР,

до востребования

х4

7

65

55

Обязательные резервы в НБРБ

33,5

0

0

0

Кредиты и депозиты банкам





Кредиты банкам-резидентам РБ под обеспечение

государственных ценных бумаг РБ в бел. руб.

х5

32

0

100

Депозиты в банках-резидентах РБ под гарантии НБ РБ

х6

25

0

100

Кредиты юридическим и физическим лицам:





обеспеченные залогом ценных бумаг, эмитированных

юридическими лицами

х7

38

100

0

обеспеченные гарантийными депозитами в бел. руб. и СКВ

х8

33

0

0

обеспеченные залогом имущества

х9

39

100

0

обеспеченные гарантиями и поручительствами юридических лиц

х10

34

100

0

Государственные ценные бумаги РБ, номинированные в бел. руб.

х11

25

0

100

Основные средства и нематериальные активы

12,4

0

100

0


Запишем целевую функцию, в данной модели представляющую процентный доход банка от размещения активов, который следует максимизировать:

f(x)= 0,05х3 + 0,07х4 + 0,32х5 + 0,25х6 + 0,38х7 + 0,33х8 + 0,39х9 + 
+ 0,34х10 + 0,25х11max

Первое ограничение следует из условия баланса: сумма активных статей баланса должна быть равна сумме пассивных его статей + собственный капитал

х1 + х2 + х3 + х4 + 33,5 + х5 + х6 + х7 + х8 + х9 + х10 + х11 + 12,4 = 373,7

Второе ограничение следует из норматива по достаточности капитала, при этом предположим, что R = 0

Третье ограничение следует из норматива мгновенной ликвидности, которое представляет собой отношение балансовых сумм активов и пассивов до востребования и с просроченными сроками:

Четвертое ограничение следует из норматива краткосрочной ликвидности, которое представляет соотношение фактической и требуемой ликвидности:

Пятое ограничение запишем исходя из минимально допустимого значения соотношения ликвидных и суммарных активов баланса:

Шестое ограничение следует из ограниченности совокупной суммы крупных рисков.

Пусть х5≥0,1×68 и х6≥0,1×68, тогда

х5 + х6≤6×68

Седьмое ограничение следует из ограниченности средств, размещенных в банках стран — не членов ОЭСР

х4≤68

Далее запишем ограничения, вытекающие из норматива максимального размера риска на одного клиента, считая для простоты, что одна статья баланса соответствует одному клиенту:

х3≤0,25×68; х4≤0,25×68; х5≤0,25×68;
х6≤0,25×68; х7≤0,25×68; х8≤0,25×68;
х9≤0,25×68; х10≤0,25×68

В завершение напишем условие неотрицательности:

хj ≥ 0, j = 1,11

Таким образом, все вышеперечисленные ограничения представляют собой модель оптимального распределения активов банка с рассмотренным выше балансом.


Задание 4


Построить уравнение регрессии, описывающее зависимость прибыли банка (у) от объема межбанковских кредитов и депозитов (х), оценить ее качество и степень зависимости. С помощью построенной регрессии прогнозировать, какой будет средняя прибыль банка при достижении объема межбанковских кредитов и депозитов величины 53 млн. руб.


банка

1

2

3

4

5

6

7

8

9

10

11

12

Кредиты и депозиты

18

23

28

29

34

36

37

42

44

45

49

50

Прибыль

12

17

15

25

20

32

25

35

30

40

41

45


Решение

Информацию, представленную в исходных данных представим графически:



Из диаграммы рассеяния видно, что зависимость между прибылью банка и объемом межбанковских кредитов и депозитов носит линейный характер. Кроме того, исследуется зависимость прибыли банка только от одного фактора — объема межбанковских кредитов и депозитов, поэтому регрессию будем строить в виде

у = а + bх

т.е. это будет простая линейная регрессия. Для расчета ее параметров воспользуемся известными формулами:

Для этого в рабочей таблице рассчитаем нужные суммы:

i

xi

yi

xiyi

xi2

yi2

1

18

12

216

324

144

2

23

17

391

529

289

3

28

15

420

784

225

4

29

25

725

841

625

5

34

20

680

1156

400

6

36

32

1152

1296

1024

7

37

25

925

1369

625

8

42

35

1470

1764

1225

9

44

30

1320

1936

900

10

45

40

1800

2025

1600

11

49

41

2009

2401

1681

12

50

45

2250

2500

2025

435

337

13358

16925

10763






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.