Взаимозаменяемость продовольственных продуктов: масла животного и масла растительного. Их потребление (183431)

Посмотреть архив целиком

тема: Взаимозаменяемость продовольственных продуктов: масла животного и масла растительного. Их потребление.


Этап 1 Постановочный


Целью этой работы является изучение взаимозаменяемости продовольственных товаров: масла животного и масла растительного. А затем построение модели, которую можно было бы использовать для прогнозирования взаимозаменяемости товаров.


Этап 2 Априорный


Изучив сложившуюся ситуацию на рынке продовольственных товаров, я пришла к выводу, что взаимозаменяемость вышеуказанных продуктов зависит от цент на эти продукты, от национальных предпочтений, от удаленности от производства, сезонных особенностей употребления этих продуктов.

Итак, результативный признак Y – потребление животного масла кг., фактор Х – потребление растительного масла кг.


Этап 3 Информационный


Для изучения влияния именно фактора Х (потребление растительного масла), постараемся отобрать в выборку однородные участки, т.е. с примерно одинаковыми характеристиками, и за один и тот же период времени.

В выборку отобрано 55 регионов РФ, расположенных в Южном федеральном округе, Приволжском федеральном округе, Уральском федеральном округе, Сибирском федеральном округе и Дальневосточном федеральном округе на январь – февраль 2007 года.

Источник статистических данных – сайт Госкомстата РФ, распечатки прилагаются.


У (потребление животного масла), кг

Х (потребление растительного масла), кг

Республика Адыгея

50,8

138,4

Республика Дагестан

50,8

147,5

Республика Ингушетия

46,3

113

Кабардино-Балкарская Республика

65,1

167

Республика Калмыкия

45,5

105,6

Карачаево-Черкесская Республика

66,9

167,2

Республика Северная Осетия - Алания

76,1

198,7

Краснодарский край

83,1

252,1

Ставропольский край

63,9

197

Астраханская область

108,4

217,8

Волгоградская область

91,5

243,1

Ростовская область

86,5

242,1

Республика Башкортостан

105,6

261,3

Республика Марий Эл

64,4

149,4

Республика Мордовия

59,5

151,1

Республика Татарстан

118,5

266,8

У (потребление животного масла), кг

Х (потребление растительного масла), кг

Удмуртская Республика

68,1

172,7

Чувашская Республика

55,9

149,7

Пермский край

118,9

294,5

Кировская область

53

168,3

Нижегородская область

80,2

227,2

Оренбургская область

74,4

209,6

Пензенская область

82,8

183,8

Самарская область

85,2

237,1

Саратовская область

90,5

190,3

Ульяновская область

80,3

196,7

Курганская область

68,6

194

Свердловская область

104,2

285,1

Тюменская область

173,3

455

Ханты-Мансийский авт.округ-Югра

221,4

547,8

Ямало-Ненецкий авт. округ

195,9

546,1

Челябинская область

87

230,8

Республика Алтай

63,7

154,7

Республика Бурятия

80,2

190,4

Республика Тыва

41

88

Республика Хакасия

66,9

171,8

Алтайский край

66,4

202,9

Забайкальский край

79,9

167,3

Агинский Бурятский авт. округ

73,2

162,8

Красноярский край

103,2

276,9

Иркутская область

89,5

210,3

Усть-Ордынский Бурятский авт. округ

43,7

82,7

Кемеровская область

93,3

258,4

Новосибирская область

90,5

229,9

Омская область

102,7

272,3

Томская область

107

273,5

Республика Саха (Якутия)

116,6

254,6

Камчатский край

90,8

293,2

Приморский край

73,9

208,3

Хабаровский край

83,5

294

Амурская область

56,4

185,2

Магаданская область

99

290,6

Сахалинская область

113,4

372,2

Еврейская автономная область

65,5

174

Чукотский авт. округ

108,2

285,8


Предварительный анализ статистических данных


Основные расчёты были проведены с помощью программы MathCAD (распечатки прилагаются).

(Или: Для удобства вычислений в ходе решения будем достраивать исходную таблицу данных до вспомогательной таблицы (см. расчетную таблицу ниже), округляя и занося в неё промежуточные результаты).





Поле корреляции и линия регрессии


Сначала построим поле корреляции – точки с координатами (хi, уi), и по их расположению сформулируем предположение о связи Y(потребление животного масла) и X(потребление растительного масла).



Визуальный анализ полученного поля корреляции показывает, что точки располагаются вдоль некоторой воображаемой возрастающей прямой линии, причём достаточно плотно, слабо рассеиваясь около неё.

Т.е. можно сказать, что прослеживается тесная прямая (положительная) зависимость, т.к. чем больше потребление растительного масла, тем больше потребление животного масла, которое зависит от сезонных особенностей.

Также можно заметить, что варьирование (дисперсия) потребление животного масла сильнее при малом потреблении растительного масла, а при большем потреблении – дисперсия потребления животного масла мала. Следовательно, можно предположить, что в модели будет гетероскедастичность.

Проверим наши предположения аналитически, с помощью расчётов на следующих этапах.





Основные характеристики выборки

Средние значения: и .

Стандартные отклонения: и

(где и ).


Итак, в данной выборке рассматриваются взаимозаменяемость потребления растительного масла в среднем на 225,275 кг. со стандартным отклонением 91,273 кг., потребления животного масла в среднем составила 86,02 кг. со стандартным отклонением 33,777 кг.


Линейный коэффициент корреляции:

(где ).

Это подтверждает сделанные ранее выводы.

Т.к. , то взаимозаменяемость животного масларастительного масла действительно можно считать линейной. Эта линейная зависимость положительна. Теснота связи очень сильная. А значит, линейная парная регрессионная модель вполне подойдёт для исследования и описания взаимозаменяемость животного масларастительного масла.





Этап 4 Спецификация и параметризация


Линейная парная регрессионная модель

На основе предыдущих этапов можем с большой уверенностью предположить, что взаимозаменяемость животного масла и растительного масла – линейна.

Тогда для моделирования используем линейную парную регрессионную модель для генеральной совокупности.

Для выборки модель также линейна: .

Найдём объяснённую часть модели - линейное уравнение регрессии по выборке: . Для этого нужно найти коэффициенты регрессии а0 и а1, являющиеся оценками параметров 0 и 1 линейной модели. А затем оценим случайную составляющую  с помощью остатков ei и проверим выполнение для них предпосылок МНК.


Случайные файлы

Файл
34676.rtf
97139.rtf
95501.doc
58368.rtf
157510.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.