Определение статистических данных производства продукции (181271)

Посмотреть архив целиком

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ











Контрольная работа по курсу

"Статистика"


Задача № 1


Определим величину интервала


I= (8,1-0,5): 4=7,6: 4=1,9


Количество заводов по группам.


группы

Группировка заводов

Среднегодовая стоимость

Валовая продукция в сопоставимых ценах, грн.

Уровень фондоотдачи (%)

к-во шт.

№ №

всего

на завод

всего

на завод

1

5

1,8,12,13, 20

5,0

1,0

4,5

0,9

90

2

8

2,3,5,7,9,11,22,23,

26,9

3,3625

26,8

3,35

99,6

3

6

4,6,10,15,18,21

30,3

13,3

35

5,833

115,5

4

5

14,16,17, 19,24

34,8

6,96

34,5

6,9

99


Интервал для групп заводов:


1-я: 0,5…2,4

2-я: 2,4…4,3

3-я: 4,3…6,2

4-я: 6,2…8,1

Уровень фондоотдачи = (Валовая продукция / стоимость ОФ) * 100%


Выводы: с ростом стоимости основных фондов (ОФ) растет стоимость валовой продукции следовательно между этими показателями существует прямая зависимость. Уровень фондоотдачи не зависит от изменения стоимости ОФ и стоимости валовой продукции.


Задача № 2


Имеются данные по двум заводам, вырабатывающим однородную продукцию (табл.31).


Таблица 31

Номер завода

1998 год

1999 год

Затраты времени на единицу продукции, ч

Изготовление продукции, шт.

Затраты времени на единицу продукции, ч

Затраты времени на всю продукцию, ч

1

2,0

150

1,9

380

2

3,0

250

3,0

840


Вычислите средние затраты времени на изготовление единицы продукции по двум заводам с 1998 по 1999 г.

Укажите, какой вид средней необходимо применять при вычислении этих показателей.

Решение.

Если в статистической совокупности дан признак Xi и его частота fi, то расчет ведется по формуле средней арифметической взвешенной:


(ч)


Если дан признак xi, нет его частоты fi, а дан объем M = xifi распространения явления, тогда расчет ведем по формуле средней гармонической взвешенной:


(ч)


Вывод:

В среднем затраты времени на изготовление единицы продукции в 1998г. выше, чем в 1999г.


Задача 3


Для определения средней суммы вклада в сберегательных кассах района, имеющего 9000 вкладчиков, проведена 10% -я механическая выборка, результаты которой представлены в таблице.


Группы вкладов по размеру, грн. - xi

До 200

200-400

400-600

600-800

Св.800

Σ

Число вкладчиков - fi

80

100

200

370

150

900

Середина интервала

100

300

500

700

700


x - A=x' - 700

-600

-400

-200

0

+200


(X - A) / i

-3

-2

-1

0

1


( (X - A) / I) *f

-240

-200

-200

0

150

-490

( (X - A) / I) 2 *f

720

400

200

0

150

1470


Решение: для определения средней суммы вкладов способов моментов воспользуемся формулой:


= m1Δ*I+Ai


где: m1 - момент первого порядка, x – варианта, i - величина интервала, f – частота, Δ - постоянная величина, на которую уменьшаются все значения признака.


m1 = (Σ ( (X-A) / i)) *f) / Σf

= ( (Σ ( (X-A) / i*f) / Σf) *i+A


Находим середины интервалов


(200 + 400) / 2 = 300 - для закрытых интервалов;


Для открытых интервалов вторая граница достраивается:


(0 + 200) / 2 = 100


Величина интервала i = 200.

Наибольшая частота равна 370, следовательно А = 700.

В вариационных рядах с равными интервалами в качестве А принимается вариант с наибольшей частотой.

Число вкладчиков


f=900

m1= (-240-200-200+150) / 900=-0,544

=-0,544*200+700=591,2 грн.


Вывод: в среднем сумма вкладов составляет 591,2 грн.

Определим дисперсию способом моментов:


σ22=i2 * (m2 - )

m1=-0.544; m2 = (Σ ( (X-A) / i) 2 *f) / Σf

m2=1470/900=1,63

σ2=2002* (1,63- (-0,544) 2) =53362,56 среднеквадратичное отклонение:

=231 грн.


Соотношение среднеквадратичного отклонения к средней называют квадратичным коэффициентом вариации:


V= (σ/) *100%= (231/591,2) *100=39,07%


Предельная ошибка выборки средней вычисляется по формуле:


Δx=t*2/n, Δx=2* (грн)


где: n - выбранной совокупности, n=900, σ2 – дисперсия, t - коэффициент доверия (табличное значение для вероятности 0,954 соответствует t=2).


Δx=2*15,4 (грн)


Т.о. с вероятностью 0,954 можно сказать, что средняя сумма вкладов в сберкассах района находится в пределах


591,2-15,4 ≤ x ≤ 591,2+15,4

575,8 x ≤ 606,4


Средняя ошибка доли признака. Доля признака в выборочной совокупности:


Р==20%, μ=


Nт=9000 интегральная совокупность, n=900 - выборочная совокупность


μ ==0,01265=1,3%

Δ=t*M=2*1,3=2,6%

20-6 ≤ ≤ 20+2,6 => 17,4 ≤ ≤ 22,6


Задача 4


Имеются данные о младенческой смертности на Украине


Год

1990

1995

1996

1997

1998

1999

Умерло детей в возрасте до 1 года (всего), тыс. чел.

12,3

11,6

11,1

10,6

9,0

9,3


Для анализа ряда динамики исчислите:

1) абсолютный прирост, темпы роста и прироста (по годам и к базисному 1995 г), абсолютное содержание 1% прироста (полученные показатели представьте в виде таблицы);

2) среднегодовой темп роста и прироста младенческой смертности: а) с 1990 по 1996 годы; б) с 1995 по 1999 годы; в) с 1990 по 1999 годы. Изобразите исходные данные графически. Сделайте выводы.

Решение:

1. Абсолютный прирост (Δi) определяется как разность между двумя уровнями динамического ряда и показывает, на сколько данный уровень ряда превышает уровень, принятый за базу сравнения Δi=yi-yбаз, где yi - уровень сравниваемого периода; yбаз - базисный уровень. При сравнении с переменной базой абсолютный прирост будет равен Δi=yi-yi-1, где yi - уровень сравниваемого периода; yi-1 - предыдущий уровень. Темпы роста определяются как процентное отношение двух сравниваемых уровней:

При сравнении с базисом:


.


По годам:


.


Темп прироста показывает, на сколько процентов уровень данного периода больше (или меньше) базисного уровня.

По отношению к базисному:


;


по годам:



или можно вычислять так:


Тп=Тр-100%.


Абсолютное содержание 1% прироста - сравнение темпа прироста с показателем абсолютного роста:


.

2. Среднегодовая младенческая смертность вычисляется по формуле:


.


3. Среднегодовой абсолютный прирост вычисляется по формуле:


.


4. Базисный темп роста с помощью взаимосвязи цепных темпов роста вычисляется по формуле:


.


5. Среднегодовой темп роста вычисляется по формуле:


.

Среднегодовой темп прироста вычисляется по формуле:


.


Рассчитанные данные представим в таблице


Год

Умерло, тыс. чел.

Абсол. прирост

Ср. год. темп роста

Ср. год. темп прироста

Аі

цепн.

базисн.

цепн.

базисн.

цепн.

базисн.

1990

12,3

-

0,7

-

106,8

-

6,8

-

1995

11,6

0,7

0

94

100

-6

-

0,125

1996

11,1

0,5

0,5

102

102

2

2

0,12

1997

10,6

0,5

0,8

89

90,6

-11

-0,4

0,12

1998

9.0

1,6

0,8

89

80,3

-11

-19,7

0,11

1999

9,3

-0,3

-1,1

99

78,6

-1

-21,4

0,09


Случайные файлы

Файл
141252.rtf
Титульный.doc
55902.rtf
121394.rtf
16410.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.