Линейная регрессия (181119)

Посмотреть архив целиком

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования


Всероссийский Заочный Финансово-Экономический институт

Филиал г. Тула






Контрольная работа

по дисциплине "Эконометрика"

Вариант 8





Выполнила:

Проверил:






Тула

2008


Задача 1


По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (, млн. руб.) от объема капиталовложений (, млн. руб.).

Требуется:

  1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.

  2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков ; построить график остатков.

  3. Проверить выполнение предпосылок МНК.

  4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента

  5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью -критерия Фишера , найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.

  6. Осуществить прогнозирование среднего значения показателя при уровне значимости , если прогнозное значения фактора Х составит 80% от его максимального значения.

  7. Представить графически: фактические и модельные значения точки прогноза.

  8. Составить уравнения нелинейной регрессии:

  • гиперболической;

  • степенной;

  • показательной.

Привести графики построенных уравнений регрессии.

  1. Для указанных моделей найти коэффициенты детерминации и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.


Вариант 8

17

22

10

7

12

21

14

7

20

3

26

27

22

19

21

26

20

15

30

13


Решение:

  1. Уравнение линейной регрессии имеет следующий вид:



Таблица 1

наблюдения

X

Y

X2

X·Y

1

17

26

289

442

2

22

27

484

594

3

10

22

100

220

4

7

19

49

133

5

12

21

144

252

6

21

26

441

546

7

14

20

196

280

8

7

15

49

105

9

20

30

400

600

10

3

13

9

39

Сумма

133

219

2161

3211

Ср. значение

13,3

21,9

216,1

321,1


Найдем b:



Тогда

Уравнение линейной регрессии имеет вид: ŷx =11,779+0,761x.

Коэффициент регрессии показывает среднее изменение результата с изменением фактора на одну единицу.

С увеличением объема капиталовложений на 1 млн. рублей объем выпускаемой продукции увеличится в среднем на 761 тыс. рублей.

  1. Вычислим остатки при помощи. Получим:


Таблица 2

ВЫВОД ОСТАТКА

Наблюдение

Остатки

1


24,72

1,284

1,649

2

28,52

-1,521

2,313

3

19,39

2,611

6,817

4

17,11

1,894

3,587

5

20,91

0,089

0,008

6

27,76

-1,76

3,098

7

22,43

-2,433

5,919

8

17,11

-2,106

4,435

9

27

3,001

9,006

10

14,06

-1,062

1,128

Сумма

219

-0,003

37,961


Найдем остаточную сумму квадратов:



Дисперсия остатков равна:


.


График остатков имеет следующий вид:


График 1


  1. Проверим выполнение предпосылок МНК.

  • Случайный характер остатков.

Случайный характер остатков εi проверяется по графику. Как видно из графика 1 в расположении точек εi нет направленности (на графике получена горизонтальная полоса). Следовательно, εi – случайные величины и применение МНК оправдано.

  • Средняя величина остатков или математическое ожидание равно нулю.

Так как расположение остатков на графике не имеет направленности (расположены на графике в виде горизонтальной полосы), то они независимы от значений фактора xi. Следовательно, модель адекватна.

  • Проверка гомоскедастичности остатков.

Выборка у нас малого объема, поэтому для оценки гомоскедастичность остатков используем метод Голдфельда - Квандта.

      1. Упорядочим n = 10 наблюдений в порядке возрастания х.

      2. Разделим на две группы - с большим и меньшим x, и для каждой группы определим уравнения регрессии.


Таблица 3


х

y

x·y

x2

ŷ

εi=yii

ε2

1

3

13

39

9

13,181

-0,181

0,033

2

7

19

133

49

17,197

1,803

3,251

3

7

15

105

49

17,197

-2,197

4,827

4

10

22

220

100

20,209

1,791

3,208

5

12

21

252

144

22,217

-1,217

1,481

Сумма

39

90

749

351



12,799

Ср.знач

7,8

18

149,8

70,2





х

y

x·y

x2

ŷ

εi=yii

ε2

1

14

20

280

196

21,672

-1,672

2,796

2

17

26

442

289

24,252

1,748

3,056

3

20

30

600

400

26,832

3,168

10,036

4

21

26

546

441

27,692

-1,692

2,863

5

22

27

594

484

28,552

-1,552

2,409

Сумма

94

129

2462

1810

 

 

21,159

Ср.знач

18,8

25,8

492,4

362









Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.