Статистика на производстве (179260)

Посмотреть архив целиком

Задача 1.7


Имеются данные по группе работников промышленного предприятия


п/п

Выполнение норм выработки, %

Заработная плата грн.

п/п

Выполнение норм выработки, %

Заработная плата грн.

1

103,1

363

16

107

388

2

105,2

382

17

105,8

389

3

106

390

18

97

340

4

96,7

342

19

103

364

5

114

416

20

108

395

6

107

404

21

110

410

7

98,5

344

22

100,8

362

8

90

300

23

105,3

385

9

102,3

373

24

103

376

10

106,4

378

25

93,6

303

11

104,3

367

26

100,7

363

12

103,7

364

27

98

345

13

106,9

387

28

101

356

14

94

310

29

101,2

360

15

108,3

406

30

100

350


Для изучения зависимости между выполнением норм выработки и заработной платы произведите группировку рабочих по выполнению норм выработки, выделив пять групп с равными интервалами. По каждой группе и в целом совокупности работников подсчитайте:

1) число рабочих;

2) средний процент выполнения норм;

3) среднюю заработную плату;

Результаты представьте в виде таблицы сделайте выводы.


Решение

Величина интервала


h = (xmaxxmin) / m = (114 – 90) / 5 = 4,8


Границы интервалов:

90 + 4,8 = 94,8

94,8 + 4,8 = 99,6

99,6 + 4,8 = 104,4

104,4 +4,8 = 109,2

109,2 + 4,8 =114

Следовательно, первая группа рабочих имеет норм выработки 90–94.8%, вторая – 94.8–99.6%, третья – 99,6–104,4%, четвертая – 104,4–109,2%, пятая – 109,2–114% выработки. По каждой группе подсчитаем нормы заработной платы и оформим результаты в виде рабочей таблицы 2.


Таблица 2

п/п

Выполнение норм выработки, %

Заработная плата грн.

8

90

300

25

93,6

303

14

94

310

Итого

277,6

913

4

96,7

342

18

97

340

27

98

345

7

98,5

344

Итого

390,2

1371

30

100

350

26

100,7

363

22

100,8

362

28

101

356

29

101,2

360

9

102,3

373

24

103

376

19

103

364

1

103,1

363

12

103,7

364

11

104,3

367

Итого

1123,1

3998

2

105,2

382

23

105,3

385

17

105,8

389

3

106

390

10

106,4

378

13

106,9

387

6

107

404

16

107

388

20

108

395

15

108,3

406

Итого

1065,9

3904

21

110

410

5

114

416

Итого

224

826


Построим аналитическую таблицу по группировочному признаку (см. таблицу 3).


Таблица 3

группы

Группа рабочих по выработке, %

Число рабочих, чел.

Средняя норма выработки, %

Месячная зарплата, грн.

I

90–94.8

3

92,53

304,3333333

II

94.8–99.6

4

97,55

342,75

III

99,6–104,4

11

102,1

363,4545455

IV

104,4–109,2

10

106,59

390,4

V

109,2–114

2

112

413

Всего:

30

102,69

367,07


Построим гистограмму распределения (см. рисунок 1).


Рисунок 1 – Гистограмма распределения


Вывод: результаты группировки представлены в таблице 3, они свидетельствуют о том, что с увеличением выработки средняя месячная заработная плата увеличивается, то есть между нормой выработки рабочего и месячной заработной платой существует прямая зависимость. Данные по каждое группе представлены в таблице 3.


Задача 2.08


Имеются данные по трем заводам, вырабатывающим одноименную продукцию «КС‑1» (таблица 4).


Таблица 4

Завод

2002 год

2003 год

Затраты времени на единицу продукции, ч.

Изготовлено продукции, тыс. шт.

Затраты времени на единицу продукции, ч.

Затраты времени на всю продукцию, ч.

1

2,0

2,0

1,8

3960

2

2,5

5,0

2,3

11500

3

2,2

3,0

2,0

6400


Исчислите средние данные времени на всю продукцию по трем заводам в 2002 и 2003 гг. Укажите какие виды средних необходимо применить. Сделайте выводы.


Решение


Согласно условия, имеем:

Xi - i‑й вариант значения усредняемого признака – времени на изготовление продукции по двум годам (дано для 2002 и 2003 гг.),

fi - частота i‑го варианта – изготовлено продукции шт. (дано для 2002 г.),

Mi - произведения значения признака и частоты – общие затраты времени на всю продукцию (дано для 2003 г.).

  1. Рассчитаем среднюю затраты времени в 2002 г., используя формулу средней арифметической взвешенной (так как располагаем данными о значениях и частотах):


,

ч


  1. Рассчитаем среднюю затраты времени в 2003 году, используя формулу средней гармонической взвешенной (так как располагаем данными о значениях, не располагаем данными о частотах, но имеем произведения значений и частот):


,

ч


  1. Вывод: средние затраты времени в 2002 г. составили 2,31 ч. (рассчитано по формуле средней арифметической взвешенной, так как располагаем данными о значениях и частотах), в 2003 г. – 1,107 ч. (рассчитано по формуле средней гармонической взвешенной, так как располагаем данными о значениях и произведения значений и частот). Средняя время на изготовление продукции в 2002 г. больше на 1,203 ч., чем в 2003 г.


Случайные файлы

Файл
29548-1.rtf
18947-1.rtf
1500-1.rtf
24177-1.rtf
181323.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.