Основы экономики (177785)

Посмотреть архив целиком













Контрольная работа

23 вариант.



Задача 1


В экономике страны производят 2 типа товаров Х и Y. Потребители тратят 83/100 своих доходов на товар Х, остальное - на товар Y. За год цены на товар X возросли на 13%, на товарY - на 18%.

Рассчитайте индекс цен потребительских товаров по отношению к предыдущему году, приняв сумму цен предыдущего года за 83%, и дайте экономическую интерпретацию полученного результата.

Решение.

Индекс цен – это показатель динамики, характеризующий относительное изменение цен за определенный период.


I = ∑ цен текущего года / ∑ цен базисного предыдущего года


Рассчитаем индекс цен потребительских товаров:

I = (( 83/100*113%) + (17/100*118%)) / 83% = ((0,83* 1,13) + (0,17*1,18)) / 0,83 = (0,938 + 0,201) / 0,83 = 1,156 / 0,68 = 1,37

Ответ: индекс цен на потребительские товары составил 1,37, т.е. цены товаров текущего года составляют 137% цен предыдущего года, следовательно, цены потребительских товаров по отношению к предыдущему году выросли на 37%.


Задача 2


В стране в текущем году ВВП составил 730 000 тыс. ден. ед., а в предыдущем – 630 000 тыс. ден. ед. Дефлятор ВВП текущего года по отношению к предыдущему равен 1,34.

Рассчитайте ВВП текущего года в сопоставимых ценах предыдущего года и реальный прирост ВВП текущего года по сравнению с предыдущим в % отношении.

Решение.

Индекс реальных доходов - это, по существу, ВВП текущего года сопоставимых цен предыдущего года.


Индекс реальных доходов = (индекс номинальных доходов / индекс цен


В качестве индекса номинальных доходов принимаем значение ВВП текущего года – 730 000 тыс. ден. ед., в качестве индекса цен дефлятор ВВП - 1,34.

Индекс реальных доходов = 730 000 / 1,34 = 544 776,12 ден. ед.

Рассчитаем реальный прирост ВВП:


Δ ВВП = 100% - (индекс реальных доходов / ВВП в предыдущем году* 100%)


Δ ВВП = 100% - (544 776,12 / 630 000*100%) = 100% - (0,865*100%) = 13,5%

Ответ: ВВП текущего года в сопоставимых ценах предыдущего года составляет 544 776,12 ден. ед., а реальный прирост ВВП п отношению к предыдущему году составил 13,5%.


Задача 3


На основании таблицы рассчитайте:

1.темп инфляции для 2-го, 3-го и 4-го годов в %;

2.используя «правило величины 70», определить количество лет необходимое для удвоения цен в 4-м году (в качестве знаменателя взять темпы инфляции для каждого года);

3.изменение реального дохода для 2-го, 3-годов в %;

4.величину реального дохода 2-го, 3-года;

Номинальный доход во 2-м и 3-м гг., у.е.

Индексы цен по годам

Изменение номинального дохода

1 год

2 год

3 год

4 год

Во 2-м г.к 1-му

в 3-м ко 2-му

48 000

100

135

146

152

12

8


Решение:

1.Рассчитаем темпы инфляции по годам:


Темп инфляции = (Индекс цен текущего года - Индекс цен предыдущего года) / Индекс цен предыдущего года


-темп инфляции для 2-го года = 100% * (135-100)/100=100% * 0,35 = 35%

-темп инфляции для 3-го года = 100% * (146-135)/100=100% * 0,11 = 11%

-темп инфляции для 4-го года = 100% * (152-146)/100=100% * 0,06 = 6%

2.Рассчитаем количество лет необходимое для удвоения цен в 4-м году используя «правило величины 70»


Кол-во лет = 70 / темп инфляции каждого года


Для 4-го года = 70 / 6 = 11,67


Год

1

2

3

4

Индекс цен

100

135

146

152

Темп инфляции

-

35%

11%

6%

Кол-во лет для удвоения цены

-

-

-

11,67


3. Рассчитаем изменение реального дохода для 2-го, 3-годов в %.


Δ реального дохода = изменение номинального дохода – изменение уровня цен

для 2-го года = 12% - 35% = -23%

для 3-го года = 8% - 11% = -3%

4. Рассчитаем величину реального дохода для 2-го, 3-годов.


Реальный доход = 100% * номинальный доход / индекс цен


для 2-го года = 100*48 000 / 135= 100*275 = 35 556 у.е.

для 3-го года = 100*48 000 / 146 = 100*253,85 = 228 = 32 876 у.е.

Ответ: темп инфляции во втором, третьем и четвертом годах составил соответственно 35%, 11%, 6%; во втором году реальный доход снизился на 23%, а в третьем году на 3%, т.о. величина реального дохода для второго года составила 35 556 у.е., а для третьего года 32 876 у.е., количество лет необходимое для удвоения цен в таких условиях составляет 11,67 года


Задача 4


Имея 165 000 руб., Вы хотите максимизировать доход за год. По какой схеме Вы положите деньги в банк, если там принимают вклады с ежемесячным начислением % (под 204% годовых), с годовым начислением % (под 103% годовых)? Найти коэффициент увеличения вклада по наиболее выгодной схеме.

Решение.

Расчет производим по формуле сложных процентов:


S = P * (1 + i),


где S – общая сумма выплат по кредиту;

P – первоначальная сумма;

i – ставка % (в долях) за один период начисления %;

n – количество периодов начисления %.

Рассмотрим возможные варианты вложений.

S1 = 165*(1 + 204% / 12) = 165*(1,17) = 165*6,58 = 1 085,7 (тыс.руб.)

S2 = 165*(1 + 103%) = 165*2,03 = 334,95 (тыс.руб.),

где S1 – вариант с ежемесячным начислением %, S2-с годовым начислением %.

Очевидно, первый вариант лучше.

Коэффициент увеличения вклада равен:


S / P = 1 085,7 / 165 = 6,58


Ответ: наиболее выгодным является начисление 1 раз в месяц, т.к. при первоначальном вложении 165 тыс.руб., получена будет сумма 1 085,7 тыс.руб.. наименее выгодным – при годовом начислении – доход равен 334,95 тыс.руб. При выборе лучшего (первого) варианта коэффициент увеличения вклада составит 6,58.


Задача 5


Фирма взяла в банке дисконтную ссуду размером 5 100 000 руб. на 8 месяцев. Ставка ссудного процента равна 55% годовых. Сколько денег получит фирма и сколько она должна будет вернуть?

Решение.

Воспользуемся формулой для дисконтных ссуд:


P = S * (1 – n * d / 12),


где P - сумма, которую получит фирма,

S – размер дисконтной ссуды,

n – количество периодов,

d – ставка ссудного процента за один период начислений %.

Следовательно, фирма получит:

P = 5 100 000*(1-8*0,55/12)=5 100 000*(1 - 8*0,046)= 5 100 000*0,633 = =3 228 300(руб.)

Фирма должна будет вернуть 5 003 865 руб. , поскольку в размер дисконтной ссуды включается сумма процентов за пользование денежными средствами за определенный период времени.( 3 228 300*155%=5 003 865)

Ответ: сумма денег, которую получит фирма, составит 3 228 300 руб., а сумма денег, которую должна будет вернуть – 5 003 865 руб.


Задача 6


Допустим, вкладчик положил 2800 руб. на 2 месяца под 113% годовых. В первый месяц рост цен составил 29%, во второй - 33%. Какова реальная стоимость вклада через 2 месяца с учетом инфляции? Какую сумму потерял вкладчик из-за инфляции?

Решение.

Найдем сумму вклада через 2 месяца без учета инфляции, воспользуясь формулой сложных процентов:


S = P * (1 + i)


S=2 800*(1+1,13/12)= 2 800*(1+0,094)= 2 800*1,197=3 351,6 (руб.)

Индекс инфляции за 2 месяца составит:

In = (1 + 1,13)*(1 + 0,29) = 2,13*1,29 = 3,42

Следовательно, реальная стоимость вклада через 2 месяца в результате инфляции будет равна:


S (In) = P*In = 2 800 * 3, 42= 9 576


Из-за инфляции потери вкладчика составили:

S – S (In) = 3 351,6 – 9 576 = -6 224,4(руб.)

Ответ: сумма, полученная вкладчиком в банке после 2-х месяцев, составит 3 351,6 руб., а реальная стоимость вклада через 2 месяца составит 9 576 руб., т.о. сумма потери вкладчика составит 6 224,4 руб.


Задача 7


Насколько максимально может увеличить сумму бессрочных вкладов вся банковская система, если норма обязательных резервов составляет 26%, а избыточные резервы – 176 035 тыс. руб.?

Решение.

Эта величина находится произведением избыточных резервов на банковский мультипликатор.

Банковский мультипликатор равен:


M=1/r,


где r – норма обязательных резервов (в долях).

Следовательно, M=1/0,26=3,85

Т.о. искомая величина равна: 176 035 *3,85 = 677 734,75

Ответ: при заданных условиях сумма максимального увеличения бессрочных вкладов банком составит 677 734,75 тыс. руб.


Задача 8


Переводной вексель (тратта) выдан на 33 тыс. руб. со сроком уплаты 19 августа того же года. Владелец векселя учел его в банке 19 марта по учетной ставке 13%. Сколько денег он получил? Сколько он получит, если срок уплаты по векселю 19 августа следующего года? Какой доход получит банк в одном и другом случае?

Решение.

Используем для расчета формулу дисконтирования:


P=S (1 – t*d),


где P- цена покупки векселя банком;

S - сумма векселя;

t - число лет, остающееся с момента учета векселя до срока его оплаты;

d - учетная ставка банка(в долях).

В соответствии с этой формулой найдем t. Между 19 марта и 19 августа шесть месяцев, которые составляют 6/12= 1/2 года.


Случайные файлы

Файл
20637-1.rtf
100137.rtf
30805-1.rtf
Moscow1.doc
8620.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.