Групповые дисперсии. Агрегатный индекс себестоимости (176241)

Посмотреть архив целиком

Задача 1. По данным о производственной деятельности ЗАО определить средние затраты на 1 руб. произведенной продукции в целом по ЗАО.


Таблица 1 - Исходные данные

Предприятие

Общие затраты на производство, млн. руб.

Затраты на 1 руб. произведенной

продукции, коп.

1

2,12

75

2

8,22

71

3

4,43

73


Решение:

Для определения средних затрат на 1 рубль произведенной продукции необходимо воспользоваться средней гармонической, так как у нас известен числитель и неизвестен знаменатель. Для определения средней строим вспомогательную таблицу.


Таблица 2 - Вспомогательная

Предприятие

Общие затраты на производство, млн. руб., (Wi)

Затраты на 1 руб.

произведенной

продукции, руб. (Xi)

Объем произведенной

продукции, млн руб.

(Wi/Xi)

1

2,12

0,75

2,83

2

8,22

0,71

11,58

3

4,43

0,73

6,07

Итого:

14,77


20,47


Так средние затраты на 1 рубль продукции рассчитываются по формуле


,


где х - признак (варианта) - индивидуальные значения усредняемого признака; показатель, представляющий собой реально существующий экономический показатель равный х∙ f:

Данные берутся из таблицы.



Ответ: Средние затраты на 1 рубль произведенной продукции равны 72 коп.

Задача 2. По данным 10% -го выборочного обследования рабочих по стажу работы, результаты которого приведены ниже, определить:

1) относительную величину структуры численности рабочих;

2) моду и медиану стажа рабочих;

3) средний стаж рабочих цеха;

4) размах вариации;

5) среднее линейное отклонение;

6) дисперсию;

7) среднее квадратическое отклонение;

8) коэффициент вариации;

9) с вероятностью 0,997 пределы, в которых изменяется средний стаж рабочих в целом по предприятию;

10) с вероятностью 0,997 пределы, в которых изменяется доля рабочих, имеющих стаж работы более 10 лет в целом по предприятию. Сделать выводы.


Таблица 3 - Исходные данные

Группы рабочих по стажу, лет

До 2

2 - 4

4 - 6

6 - 8

8 - 10

10 - 12

12 - 14

Число рабочих

6

8

12

24

17

8

5


Решение:

1) Находим относительную величину структуры численности рабочих, для этого строим следующую таблицу.


Таблица 4 - Относительная структура численности рабочих

Группы рабочих по стажу, лет

Число рабочих

Структура,%

До 2

6

7,5

2 - 4

8

10

4 - 6

12

15

6 - 8

24

30

8 - 10

17

21,25

10 - 12

8

10

12 - 14

5

6,25

Итого:

80

100


2) Находим моду и медиану стажа рабочих. Для этого строим вспомогательную таблицу.


Таблица 5 - Вспомогательная.

Группы рабочих по стажу, лет

Число рабочих (fi)

Середина интервала, (xi)

xi*fi

fi. накопл

До 2

6

1

6

6

2 - 4

8

3

24

14

4 - 6

12

5

60

26

6 - 8

24

7

168

50>40

8 - 10

17

9

153

67

10 - 12

8

11

88

75

12 - 14

5

13

65

80

Итого:

80


564



Мода - это наиболее часто встречающееся значение ряда:


,


где - мода; - нижняя граница модального интервала. Интервал с максимальной частотой является модальным; - шаг модального интервала, который определяется разницей его границ; fmo - частота модального интервала; fmo-1 - частота интервала, предшествующего модальному; fmo+1 - частота интервала, последующего за модальным.

Медианой является значение признака х, которое больше или равно и одновременно меньше или равно половине остальных элементов ряда распределения. Медиана делит ряд на две равные части:


,


где xme - нижняя граница медианного интервала. Интервал, в котором находится порядковый номер медианы, является медианным. Для его определения необходимо подсчитать величину . Интервал с накопленной частотой равной величинеявляется медианным; i - шаг медианного интервала, который определяется разницей его границ; - сумма частот вариационного ряда; Sme-1- сумма накопленных частот в домедианном интервале; fme - частота медианного интервала.

3) Находим средний стаж рабочих цеха:


,


где х - признак (варианта) - индивидуальные значения усредняемого признака, в качестве которого берется середина интервала, определяемая как полусумма его границ;

f - частота, т.е. числа, показывающие, сколько раз повторяется та или иная варианта.

Сравниваем полученные значения, в нашем случае получаем:


,


что говорит о левосторонней асимметрии.

По этим данным можно сделать вывод о том, что средний стаж рабочих составляет 7,05 лет; наиболее часто встречаются рабочие со стажем 7,263 года. Кроме того, половина рабочих имеет стаж более 7,166 лет, а другая - менее 7,166 лет.

4) Находим размах вариации.

Размах вариации:


,


где хmax - максимальное значение признака; х min - минимальное значение признака.

Так, разница между максимальным значением признака и минимальным составляет 12.

5) Находим среднее линейное отклонение:


,


где - индивидуальные значения признака, - средняя величина; f - частота.

Строим расчетную таблицу.


Таблица 6 - Расчетная

Середина интервала, (xi)

Число рабочих (fi)

1

6,05

6

36,3

36,60

219,62

3

4,05

8

32,4

16,40

131,22

5

2,05

12

24,6

4, 20

50,43

7

0,05

24

1,2

0,00

0,06

9

1,95

17

33,15

3,80

64,64

11

3,95

8

31,6

15,60

124,82

13

5,95

5

29,75

35,40

177,01

7,05


80

189


767,80


Случайные файлы

Файл
4394-1.rtf
чТУ.doc
30631.rtf
182257.rtf
14518-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.