Графическое решение задачи линейного программирования в экономике (176233)

Посмотреть архив целиком


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ









Контрольная работа

по дисциплине:

"Экономическая информатика"





Выполнила студентка:

гр. ПВ 09-1з

Проверил:








Краматорск, 2010


Задание № 1. Графическое решение задачи линейного программирования


Решить графически и с помощью Excel формализованную задачу линейного программирования.


3x1-x29,2x1+x250,x1+4x219;

f=x1+5x2. (max).


Графическое решение задачи линейного программирования


Экономический вывод:

Для получения максимальной прибыли в размере 35 ед. план выпуска продукции должен быть таким: изделие 1 - 9 единиц, выпуск изделия 2 - 16 единицы, выпуск изделия 3 - 19 единиц. При этом, затраты ресурсов составят:

Избыточным является ресурс "2", недостаточным - "1" и "3".


Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

2

3

4

3

A2

60

5

3

1

2

A3

80

2

1

4

2

Потребности

120

40

60

80



















Потребитель 1

Потреитель 2

Потребитель 3

Потребитель 4

Поставщик 1

46

32

46

37

160

Поставщик 2

31

6

4

18

60

Поставщик 1

43

2

11

25

80

120

40

60

80

Грузооборот

875,8

т. - км


Переменные

x1

x2

Значения

11,8

26,4

Нижн граница

0

0

Верх граница

F

1

5

=СУММПРОИЗВ

(C$3: D$3; C6: D6)

max

Коэффициенты целевой функции

Значение

Фактические ресурсы

Неиспользованные ресурсы

Коэффициенты

Система ограничений

-3

1

=СУММПРОИЗВ

(C$3: D$3; C9: D9)

<=

-9

=G9-E9

2

1

=СУММПРОИЗВ

(C$3: D$3; C10: D10)

<=

50

=G10-E10

1

-4

=СУММПРОИЗВ

(C$3: D$3; C11: D11)

<=

-19

=G11-E11


Задание №2. Транспортная задача


На две базы А1 и А2 поступил однородный груз в количестве а1 т на базу А1 и а2 т на базу А2. Полученный груз требуется перевезти в три пункта: b1 т в пункт B1, b2 т в пункт B2, b3 т в пункт B3. Расстояния между пунктами отправления и пунктами назначения указаны в матрице R. Составить план перевозок с минимальными расходами. Решить задачу при заданных запасах и потребностях.

Стоимость одного тонно-километра принять за единицу.


Вариант

А1

А2

B1

B2

B3

R

6

200

230

190

100

140

12 5 16

14 10 8


Пусть xij - количество груза, перевезенного из пункта Аi в пункт Вj. Проверим соответствие запасов и потребностей: 200+230=430 = 190+100+140=430. Задача замкнутая. Целевая функция F равна стоимости всех перевозок:


F = 12x11+5x12+16x13+14x21+10x22+8x23 (min).


Система ограничений определяется следующими условиями:

а) количество вывозимых грузов равно запасам:


x11 + x12+ x13 = 200;

x21 + x22+ x23 = 230.


б) количество ввозимых грузов равно потребностям:


x11 + x21 = 190;

x12 + x22 = 100;

x13 + x23 = 140


в) количество вывозимых грузов неотрицательно:


x11 0; x12 0; x13 0

x21 0; x22 0; x23 0


Получили формализованную задачу:


F = 12x11+5x12+16x13+14x21+10x22+8x23 (min).

x11 + x12+ x13 = 200;

x21 + x22+ x23 = 230.

x11 + x21 = 190;

x12 + x22 = 100;

x13 + x23 = 140

x11 0

x12 0

x13 0

x21 0

x22 0

x23 0


Экономический вывод:

Для получения грузооборота с минимальными расходами в размере 4048 т. км. Поставщик 1 должен предоставить потребителю 1 - 100 т груза, а потребителю 2 - 100 т груза. Поставщик 2 должен предоставить потребителю 1 - 90 т груза, а потребителю 3 - 140 т груза.


Таблица.

Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

A1

200

12

5

16

A2

230

14

10

8

Потребности

190

100

140











Потре-битель 1

Потре-битель 2

Потре-битель 3

Поставщик 1

100

100

0

200

Поставщик 2

90

0

140

230

190

100

140


Грузооборот

4080

т. - км






Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

A1

200

12

5

16

A2

230

14

10

8

Потребности

190

100

140











Потребитель 1

Потребитель 2

Потребитель 3

Поставщик 1

0

100

100

=СУММ (B9: D9)

Поставщик 2

190

0

40

=СУММ (B10: D10)

=СУММ (B9: B10)

=СУММ (C9: C10)

=СУММ (D9: D10)


Грузооборот

=СУММПРОИЗВ (B9: D10; C3: E4)

т. - км


Задание № 3. Межотраслевая балансовая модель


Имеется трехотраслевая балансовая модель с матрицей коэффициентов затрат.



где aij - затраты i-ой отрасли на производство единицы продукции j-ой отрасли (в товарном или в денежном выражении).

Фонды накопления отраслей заданы числами d1, d2, d3.

Производственные мощности отраслей ограничивают возможности ее валового выпуска числами r1, r2, r3.

Определить оптимальный валовой выпуск всех отраслей, максимизирующий стоимость суммарного конечного продукта, если на конечный продукт накладывается некоторое ограничение.

Цена единицы конечного продукта 1, 2 и 3 отраслей соответственно равна: c1, c2, c3.



товарных единиц


k1: k2: k3 = 2: 1: 2;

R= (240, 420, 230), C= (2, 4,3).


Формализация задачи.

Пусть xi - валовой выпуск i-й отрасли, i=1,2,3. Так как на собственное производство, а также на производство продукции 2-й отрасли первая отрасль произведенную продукцию не расходует, суммарный конечный продукт равен произведенной продукции K1=x1.

Вся произведенная продукция будет продана и выручка составит c1x1.

Чтобы определить прибыль 1-й отрасли, из полученной ею выручки нужно вычесть суммы, затраченные на производство продукции 1-й, 2-й и 3-й отраслей:


К1=x1- (a11x1+a12x2 +a13x3).


Аналогично для 2-й отрасли


K2=x2, К2=x2- (a21x1+a22x2+a23x3).


Подставляя числовые значения, получим выражения для прибыли 1-й 2-й и 3-й отраслей:


К1=x1- (0,21x1+0,07x2+0,12x3).

К2=x2- (0,06x1+0,03x2+0,15x3).

К3=x3- (0,2x1+0,14x2+0,03x3).


Целевая функция - это цена всей проданной продукции: с1К12К23К3.

Следовательно, целевая функция задачи такая:


F1К12К23К3 (max).


Подставляя в последнюю формулу значения с1, c2, c3 выражения K1, K2, K3 получаем выражение для целевой функции


F = 2 (x1- (0,21x1+0,07x2+0,12x3)) +4 (x2- (0,06x1+0,03x2+0,15x3)) +3 (x3- (0,2x1+0,14x2+0,03x3)) (max).


Приведя подобные члены, получим: F=0.74x1+3.32x2+2.07x3 (max).

Ограничения задачи:

1) По производственным мощностям: x1240, x2420, x3230

2) По комплектности: K2: K3 = 1: 2. Это условие равносильно условию т.е. условию или .

4) Выпуск продукции: x10, x20, x30

Формализованная задача имеет вид:


F=0.74x1+3.32x2+2.07x3 (max).

x1240,x2420,x3230,.

x10

x20

x30


Матрица затрат

0,21

0,07

0,12

0,06

0,03

0,15

0,2

0,14

0,03


240

0

0

0

0

230

0

420

0

240

420

230

Целевая функция

144

max

R

300

200

350


Матрица затрат

0,21

0,07

0,12

0,06

0,03

0,15

0,2

0,14

0,03


240

0

0

0

0

230

0

420

0

=СУММ (A7: A9)

=СУММ (B7: B9)

=СУММ (C7: C9)

Целевая функция

=СУММПРОИЗВ (B2: D4; A7: C9)

max

R

300

200

350


Задание 4. Задачи разных типов


Формализовать задачу линейного программирования и решить с помощью Excel. Сделать экономический вывод.

Задание 1.

На звероферме могут выращиваться черно-бурые лисицы и песцы. Для обеспечения нормальных условий их выращивания используется три вида кормов. Количество единиц корма, расходуемых на одно животное, запасы кормов и цена 1 шкурки указаны в таблице.


Вид корма

Кол-во ед. на 1 животное

Общее кол-во корма

лисица

песец


I

2

3

180

II

4

1

240

III

6

7

426

Цена

16

12


Определить, сколько лисиц и песцов необходимо выращивать, чтобы получить максимальную цену от продажи их шкурок.

Обозначим лисиц через x1, песцов через - x2.

Определим прибыль от выращивания животных. Прибыль от выращивания лисицы составляет по условию 16 ден. ед. План выращивания лисиц - x1 ед. Прибыль от выращивания песцов составляет по условию 12 ден. ед. План выращивания песцов - x2 ед. Суммарная прибыль от выращивания всех животных составит (16x1+12x2) ден. ед. Тогда целевая функция имеет вид: F=16x1+12x2, - суммарная прибыль должна быть наибольшей.

Составим систему ограничений.

1. Ограничение на использование сырья.

Для того чтобы вырастить одну лисицу необходимо 2 ед. корма 1, необходимо 2х1 корма для лисиц, для того чтобы вырастить одного песца необходимо 3 ед. корма 1, необходимо 3х2 корма для песцов. Количество корма 1 для животных не должно превышать 180 единиц. Ограничение на использование корма 1: 2x1+3x2180

Для того чтобы вырастить одну лисицу необходимо 4 ед. корма 2, необходимо 4х1 корма для лисиц, для того чтобы вырастить одного песца необходимо 1 ед. корма 2, необходимо 1х2 корма для песцов. Количество корма 2 для животных не должно превышать 240 единиц. Ограничение на использование корма 2: 4x1+1x2240

Для того чтобы вырастить одну лисицу необходимо 6 ед. корма 3, необходимо 6х1 корма для лисиц, для того чтобы вырастить одного песца необходимо 7 ед. корма 3, необходимо 7х2 корма для песцов. Количество корма 3 для животных не должно превышать 426 единиц. Ограничение на использование корма 3: 6x1+7x2426

Получили математическую модель задачи:


F=16x1+12x2max


2x1+3x2180

4x1+1x2240

6x1+7x2426


x10, x20



Решив задачу одним из способов, рассмотренных в приложении, получим значения переменных: x1=57; x2=12; Fmax=1056.

Решение задачи линейного программирования включает в себя не только формализацию и математическое решение, но и экономический анализ полученных результатов.

Экономический вывод:

Для получения максимальной прибыли в размере 1056 ден. ед. план развода животных должен быть таким: лисиц - 57 единиц, песец - 12 единиц. При этом, затраты ресурсов составят:

"Корм 1" - 150 единицы при запасе 180 ед. (остаток 30 единиц);

"Корм 2" - 240 кг единицы при запасе 240 ед.;

"Корм 3" - 426 единиц при запасе 426 ед. .


Избыточным является ресурс "Корм 1", недостаточным - "Корм 2" и "Корм3".

Вид корма

Кол-во ед. на 1 животное

Общее кол-во корма

лисица

песец

I

2

3

180

II

4

1

240

III

6

7

426

Цена

16

12






Оптимальное кол-во

57

12



Реальные затраты

114

36

150

I

228

12

240

II

342

84

426

III






Целевая функция

1056

max



Вид корма

Кол-во ед. на 1 животное

Общее кол-во корма

лисица

песец

I

2

3

180

II

4

1

240

III

6

7

426

Цена

16

12






Оптимальное кол-во

57,0000003181818

11,9999997272727



Реальные затраты

=СУММПРОИЗВ (B12; B7)

=СУММПРОИЗВ (C12; C7)

180

I

=СУММПРОИЗВ (B12; B8)

=СУММПРОИЗВ (C12; C8)

=СУММ

(B14: C14)

II

=СУММПРОИЗВ (B12; B9)

=СУММПРОИЗВ (C12; C9)

=СУММ

(B15: C15)

III






Целевая функция

=СУММПРОИЗВ (B12: C12; B10: C10)

max



Задание 2.

Для кормления подопытного животного ему необходимо давать ежедневно не менее 15 ед. химического вещества А1 (витамина или некоторой соли) и 15 ед. химического вещества А2. Не имея возможности давать вещество А1 или А2 в чистом виде, можно приобретать вещество В1 по 1 д. е. или В2 по 3 д. е. за 1 кг, причем каждый кг В1 содержит 1 ед. А1 и 3 ед. А2, а кг В2 - 6 ед. А1 и 2 ед. А2.

Запасы веществ на складе: В1 - 7 кг, В2 - 9 кг.

Определить оптимальную закупку веществ В1 и В2 для ежедневного рациона.

Формализация задачи:

Пусть x1 - количество В1, а x2 - количество В2, которое необходимо использовать в рационе. Тогда целевая функция - стоимость продуктов равна:


F = 1x1+3x2 - min.


Составим систему ограничений.

1. Ограничение на содержание в рационе кормовых единиц - не менее 15 вещества А1 и не менее 15 вещества А2. В одной единице В1 содержится по 1 кормовой единице вещества А1 и 3 кормовые единицы вещества А2. В одной единице В2 содержится по 6 кормовых единиц вещества А1 и 2 кормовые единицы вещества А2.

2. Ограничение на содержание в рационе вещества А1 - не менее 15 единиц. Значит, 1x1+6x2 ≥ 15.

3. Аналогично рассуждая, составим ограничения на содержание вещества А2 - не менее 15 единиц. Значит, 3x1+2x2 ≥ 15.

4. Ограничение запасы вещества В1 и В2 x1≤7; x2≤9;

Так как x1 и x2 - количество продукта, то x1 и x2 неотрицательны.

Получили математическую модель задачи о смесях:


F = 1x1+3x2 - min.

1x1+6x2 ≥ 15.

3x1+2x2 ≥ 15.

x1≤7

x2≤9

x1 0

x2 0

Решение: x1=4; x2=2; Fmin=10.


Экономический вывод:

В суточном рационе должно содержаться 4 единицы вещества В1 и 2 единицы вещества В2. Стоимость такого рациона составит 10 ден. ед.

Питательность рациона составит:

Вещество А1 - 16 единиц, А2 - 16 единиц.


Хим вещество

Вещество заменитель

общее необходимое кол-во /cутки.

B1

B2

A1

1

6

15

A2

3

2

15

цена

1

3

запасы

7

9


Оптимальная закупка

B1

B2


4

2


Реальные замена

4

12

16

12

4

16

Сумма

4

6






Целевая функция

10



Хим вещество

Вещество заменитель

общее нелбходимое

кол-во / cутки.

B1

B2

A1

1

6

15

A2

3

2

15

цена

1

3

запасы

7

9


Оптимальная закупка

B1

B2


4

2


Реальные замена

=B9*B4

=C9*C4

=СУММ (B10: C10)

=B9*B5

=C9*C5

=СУММ (B11: C11)

Сумма

=B9*B6

=C9*C6






Целевая функция

=СУММПРОИЗВ

(B9: C9; B6: C6)



Задание 3.

На трех складах оптовой базы сосредоточен однородный груз в количествах 180, 60 и 80 единиц.

Этот груз необходимо перевезти в 4 магазина. Каждый из магазинов должен получить соответственно 120, 60, 40 и 80 единиц груза.

Тарифы перевозок единицы груза из каждого склада во все магазины задаются матрицей


2 3 4 3

С = 5 3 1 2

2 1 4 2


Составить план перевозок, стоимость которых является минимальной.


Пункты

Отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

x11

2

X12

3

x13

4

x14

3

A2

60

X21

5

x22

3

X23

1

x24

2

A3

80

X31

2

X32

1

x33

4

x34

2

Потребности

120

60

40

80


Пусть число пунктов отправления и число пунктов назначения равно 4 (n=4, m=4). Запасы, потребности и стоимость перевозок указаны в таблице:

Пусть xij - количество груза, перевезенного из пункта Аi в пункт Вj. Проверим соответствие запасов и потребностей:


180+60+80=320 > 120+60+40+80=300.


Задача открытая.

Целевая функция F равна стоимости всех перевозок:


F = 2x11+3x12+4x13+ 3x14+5x21+3x22+1x23+2x24+2x31+1x32+4x33+2x34 (min).


Система ограничений определяется следующими условиями:

а) количество вывозимых грузов не больше запасов:


x11+x12+x13+x14 180;

x21+x22+x23+x24 60;

x31+x32+x33+x34 80.


б) количество ввозимых грузов равно потребностям:


x11+x21+x31= 120;

x12+x22+x32= 60;

x13+x23+x33= 40;

x14+x24+x34= 80;


в) количество вывозимых грузов неотрицательно:


x11 0; x12 0; x13 0; x14 0

x21 0; x22 0; x23 0; x24 0

x31 0; x32 0; x33 0; x34 0


Получили формализованную задачу:


F = 2x11+3x12+4x13+ 3x14+5x21+3x22+1x23+2x24+2x31+1x32+4x33+2x34 (min).

x11+x12+x13+x14 180;

x21+x22+x23+x24 60;

x31+x32+x33+x34 80.

x11+x21+x31= 120;

x12+x22+x32= 60;

x13+x23+x33= 40;

x14+x24+x34= 80;

x11 0; x12 0; x13 0; x14 0; x21 0; x22 0; x23 0; x24 0; x31 0; x32 0;

x33 0; x34 0.


Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

2

3

4

3

A2

60

5

3

1

2

A3

80

2

1

4

2

Потребности

120

40

60

80



















Потре-битель 1

Потре-битель 2

Потре-битель 3

Потре-битель 4

Поставщик 1

46

32

46

37

160

Поставщик 2

31

6

4

18

60

Поставщик 1

43

2

11

25

80

120

40

60

80

Грузооборот

875,8

т. - км


Пункты отправления

Запасы

Пункты назначения

B1

B2

B3

B4

A1

180

2

3

4

3

A2

60

5

3

1

2

A3

80

2

1

4

2

Потребности

120

40

60

80



















Потребитель 1

Потребитель 2

Потребитель 3

Потребитель 4

Поставщик 1

39,4444451388889

38,3333334166667

45,5555562777778

36,6666671666667

=СУММ (B11: E11)

Поставщик 2

37,7777775555556

0

3,88888869444445

18,33333375

=СУММ (B12: E12)

Поставщик 1

42,7777783055556

1,66666658333333

10,5555550277778

25,0000000833333

=СУММ (B13: E13)

=СУММ (B11: B13)

=СУММ (C11: C13)

=СУММ (D11: D13)

=СУММ (E11: E13)

Грузооборот

=СУММПРОИЗВ (B11: E13; C3: F5)

т. - км










Случайные файлы

Файл
18562-1.rtf
96885.rtf
19898.rtf
Report2002.doc
109009.rtf