Биотехнология и переработка отходов. Биогаз (168608)

Посмотреть архив целиком

БИОТЕХНОЛОГИЯ И ПЕРЕРАБОТКА ОТХОДОВ


С момента возникновения цивилизованного общества перед ним все время стояла проблема охраны окружающей среды. Из-за промышленной, сельскохозяйственной и бытовой деятельности человека постоянно происходили изменения физических, химических и биологических свойств окружающей среды, причем многие из этих изменений были весьма неблагоприятны.

Биотехнологические приемы являются примером эффективного контроля за состоянием окружающей среды. Особенно остро сейчас стоит проблема распространения в окружающей среде ксенобиотиков и нефтяных загрязнений.

Биологическая переработка отходов преследует три основные цели:

Деградация органических и неорганических токсичных отходов;

Возобновление ресурсов для возврата в круговорот веществ С, N, P, S;


Получение ценных видов органического топлива


Классический процесс очистки стоков включает в себя следующие этапы:

При первичной обработке удаляются твердые частицы, которые либо отбрасываются, либо направляются в реактор.

На втором этапе происходит разрушение растворенных органических веществ при участии природных аэробных микроорганизмов. Образующийся ил, состоящий главным образом из микробных клеток, либо удаляется, либо перекачивается в реактор. По технологии, использующей активный ил, часть его возвращается в аэрационный танк.

На третьем этапе производится химическое осаждение и разделение фосфора и азота.

Для переработки ила, образующегося на первом и втором этапах, обычно используется процесс анаэробного разложения. при этом уменьшается объем осадка и количество патогенов, устраняется запах, а кроме того, образуется ценное органическое топливо – метан.

Аэробная переработка стоков – это самая обширная область контролируемого использования микроорганизмов в биотехнологии. Она включает следующие стадии:

адсорбция субстрата на клеточной поверхности;

расщепление адсорбированного субстрата внеклеточными ферментами;

поглощение растворенных веществ клетками;

рост и эндогенное дыхание;

высвобождение экскретируемых продуктов;

«выедание» первичной популяции организмов вторичными потребителями.

В идеале это должно приводить к полной минерализации отходов до простых солей, газов и воды. Эффективность переработки пропорциональна количеству биомассы и времени контактирования ее с отходами.

Системы аэробной переработки можно разделить на системы с перколяционными фильтрами и системы с использованием активного ила.

Принцип перколяционного фильтра – разложение отходов при помощи микроорганизмов, находящихся ф фильтрующем элементе. В качестве заполнителя элемента может использоваться песок, гравий или полимерные материалы. Недостаток таких фильтров – избыточный рост биомассы.

Активный ил – сложная смесь микроорганизмов, осуществляющая переработку отходов в биореакторах. Для успешной переработки необходимо подбирать микробный засевной материал под каждый вид стоков.

Анаэробное разложение отходов – используется с 1901 г. Анаэробная ферментация отходов очень перспективна для экономичного получения газообразного топлива при умеренных температурах (30-35оС).

Сообщество метанообразующих микроорганизмов состоит из трех видов бактерий: бактерии, осуществляющие гидролиз и брожение. За счет их деятельности расщепляется целлюлоза, синтезируются жирные кислоты. Далее – бактерии, образующие водород и уксусную кислоту. И, наконец, водородотрофные метанообразующие бактерии.


Аэробная переработка отходов в сельском хозяйстве


Применение в животноводстве интенсивных технологий привело к образованию большого количества разнообразных отходов, для использования которых может не хватить земельной площади. На сегодняшний день существует несколько систем контролируемой переработки отходов в сельском хозяйстве.

Для переработки твердых отходов необходимо много времени и средств, поэтому для их удаления широко используется вода, а образующаяся взвесь закачивается в хранилища, либо в системы переработки.

Водоем для окисления. Установка представляет собой емкость глубиной не более 150 см и с площадью поверхности, обеспечивающей аэрацию. На поверхности этого водоема растут фотосинтезирующие водоросли, которые повышают эффективность системы благодаря выделению кислорода. К недостаткам таких установок относятся: потребность во времени; накопление твердых отходов, которые разлагаются в анаэробных условиях; создание условий для размножения насекомых. Достоинства – не требует механизации и обслуживающего персонала.

Аэрируемый водоем отличается от водоема для окисления только наличием аэрационной установки.

Каскадные бассейны – простая немеханизированная система. В эту систему отходы поступают постоянно. Они включают первичный отстойник, в котором осаждаются крупные частицы, а также каскад мелких бассейнов, разделенных перегородками или плотинами, через которые перетекает вода. Переливаясь из бассейна в бассейн, вода аэрируется. Если время удержания подобрано правильно, то глубина переработки оказывается не меньше, чем в водоеме для окисления. Недостатки – плохое перемешивание и подавление микрофлоры из-за недостатка кислорода.

Канава Пасвира. – представляет собой непрерывную вытянутую в длину емкость, которую часто располагают под полом животноводческих помещений. Жидкость с толщиной слоя 0,3-0,6 м аэрируют и перемешивают с помощью ротора. По сути является реактором непрерывного действия, в котором формируется спцифическая микрофлора.


Переработка отходов сельского хозяйства в анаэробных условиях


При переработке органических отходов в анаэробных условиях образуется горючий газ, на 60% состоящий из метана, и твердый остаток, содержащий почти весь азот и все другие питательные вещества, содержащиеся в исходном растительном материале. В природе такой процесс развивается при недостатке кислорода в местах скопления веществ растительного или животного происхождения: в болотах, осадках на дне озер, в желудке травоядных. Температурный оптимум процесса лежит в пределах 30-35оС, и для его поддержания нужен подогрев.

Еще в начале века было выявлено, что из навоза можно получать горючий газ, а отходы использовать как удобрение. Основные части такой биоустановки: герметичный танк, или реактор, в котором осуществляется ферментация, и емкость для газа – накопительный плавающий колокол с емкостью близкой к таковой у реактора.

Метанобразующие бактерии являются строгими анаэробами. На первой стадии процесса ферментации из растительной и фекальной массы образуются летучие жирны кислоты (уксусная, масляная). Важную роль при этом играют клостридии. Кислоты (за исключением уксусной) служат далее субстратом для группы уксуснокислых бактерий. В конечном счете в результате совместного действия этих групп бактерий образуются уксусная кислота, водород и углекислый газ, которые являются подходящим субстратом для метанообразующих бактерий.

Основная проблема, которая возникает на фермах, где содержится много животных, заключается в хранении навоза и использовании его наиболее выгодным образом. Если при этом в качестве побочного продукта будет образовываться метан и затраты на хранение навоза не увеличатся, то для ферм это будет безусловно положительным моментом. Современные конструкции реакторов не окупают себя за счет производства метана. Такие реакторы оказываются рентабельными в развивающихся странах, где используется дешевый ручной труд.



ПОЛУЧЕНИЕ ЭКОЛОГИЧЕСКИ ЧИСТОЙ ЭНЕРГИИ. БИОГАЗ


Экологически чистую энергию можно получать путем преобразования солнечной энергии в электрическую с помощью солнечных коллекторов, а также из биогаза и микробного этанола.

Биогаз — это смесь из 65 % метана, 30 % СО2, 1 % сероводорода и незначительных примесей азота, кислорода, водорода и угарного газа. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии: 16,8 м3 природного газа; 20,8 л нефти; 18,4 л дизельного топлива. В основе получения биогаза лежит процесс метанового брожения, или биометаногенез — процесс превращения биомассы в энергию.

Биометаногенез — сложный микробиологический процесс, в котором органическое вещество разлагается до диоксида углерода и метана в аэробных условиях. Микробиологическому анаэробному разложению поддаются практически все соединения природного происхождения, а также значительная часть ксенобиотиков органической природы. В анаэробном процессе биометаногенеза выделяют три последовательные стадии, в которых участвуют свыше 190 различных микроорганизмов. На первой стадии под влиянием экстрацеллюлярных ферментов ферментативному гидролизу подвергаются сложные многоуглеродные соединения — белки, липиды и полисахариды. Вместе с гидролитическими бактериями функционируют и микроорганизмы — бродильщики, которые ферментируют моносахариды, органические кислоты.

На второй стадии (ацидогенез) в процессе ферментации участвуют две группы микроорганизмов: ацетогенные и гомоацетатные. Ацетогенные Н2-продуцирующие микроорганизмы ферментируют моносахариды, спирты и органические кислоты с образованием Н2, СО2, низших жирных кислот, в основном ацетата, спиртов и некоторых других низкомолекулярных соединений. Деградация бутирата, пропионата, лактата с образованием ацетата происходит при совместном действии ацетогенных Н2-продуцирующих и Н2-утилизирующих бактерий. Гомоацетатные микроорганизмы усваивают Н2 и СО2, а также некоторые одноуглеродные соединения через стадию образования ацетил-КоА и превращения его в низкомолекулярные кислоты, в основном в ацетат.


Случайные файлы

Файл
56046.rtf
37449.rtf
16896-1.rtf
102734.rtf
128647.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.