Основы физической химии (166702)

Посмотреть архив целиком

Министерство науки и образования Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

"Пермский государственный технический университет"

Березниковский филиал

Кафедра химической технологии и экологии




Расчетная работа

Основы физической химии
















2010





1. Задание.


Определить ∆Н, ∆U, ∆S, ∆F, ∆G реакции при постоянном давлении р = Па и Т = 450 К.


Справочные материалы.

Вещество

кДж/моль



Дж/моль*К

кДж/моль

Коэффициенты уравнения


a

b*


-1675,69

50,92

-1582,27

114,55

12,89

-34,31

-395,85

256,69

-371,17

64,98

11,75

-16,37

-3441,80

239,20

-3100,87

366,31

62,59

-112,47


1.1 Расчет теплового эффекта реакции


Расчет теплового эффекта реакции в изобарном процессе в стандартных условиях (H):


= ∆-(∆)

-3441,80-(-1675,69+3(-395,85))=-578,56 кДж


Вывод: В стандартных условиях данный процесс является экзотермический, реакция идет с выделением тепла.

Расчет теплового эффекта реакции в изобарном процессе при заданной температуре(H):


с=0, т.к. все вещества неорганические

a ==366,31-(114,55+3*64,98)=56,82

b ==62,59-(12,89+3*11,75)=14,45*1

=)=-112,47-(-34,31-3*16,37)=-29,05*1

=-578560+56,82+14,45*1T-29,05*1/)dT= -578560+56,82+14,45*1 -29,05*1= -578560+56,82(450-298)+14,45*1/2*(45-29)-29,05*1((450-298)/298*450)=-578560+8636,64+821,45-3292,77=-572,39 кДж


Вывод: При увеличении температуры на 152 К тепловой эффект реакции изменился на 6,17 кДж, реакция осталась экзотермической.

Расчет теплового эффекта реакции в изохорном процессе в стандартных условиях(U):


Н=∆U+p∆V ; ∆U=∆H-p∆V

p∆V=∆nRT

U=∆H-∆nRT

n=∆= 0 – 3 = -3; ∆n = -3

R=8,314 Дж/моль*К

U(298)=-578,56-(-3)*0,008314*298=-571,13 кДж


Вывод: В изохорно-изотермическом процессе, при стандартных условиях реакция протекает с выделением тепла, т.е. процесс экзотермический.

Расчет теплового эффекта реакции в изохорном процессе при заданной температуре (U):


U(450)=-572,39-(-3)*0,008314*450=-561,17 кДж






Вывод: При увеличении температуры на 152 К тепловой эффект данной реакции в изохорно-изотермическом процессе уменьшился на 9,96 кДж, реакция идет с выделением тепла.


1.2 Определение направления протекания химического процесса


Определение направления протекания реакции в изолированной системе (S):

а) в стандартных условиях:


(298) =(298- ((298 + 3*(298)

(298) =239,2-(50,92+3*256,69)=-581,79 Дж


Вывод: При взаимодействии оксида алюминия с оксидом серы (VI) в изолированной системе получилось, что ∆S<0, поэтому процесс невозможен.

б) при заданной температуре:

с=0, т.к. все вещества неорганические


(T)=∆(450)+

(450)=-581,79+56,82+14,45*1*T-29,05*1/)dT/T= -581,79+56,82+14,45*1-29,05*1= -581,79+56,82*ln450/298+14,45*1(450-298)- 29,05*1*1/2*((45-29/29*45)=-581,79+23,42+2,196-9,15=-565,32 Дж


Вывод: При увеличении температуры на 152 К энтропия увеличилась на 16,466 Дж, но осталась отрицательной. В изолированной системе процесс невозможен. Расчет изобарно-изотермического потенциала (G):

а) в стандартных условиях





(298) =(298- ((298 + 3*(298)

(298) =-3100,87-(-1582,27+3*(-371,17))=-405,13 кДж/моль


Вывод: При взаимодействии оксида алюминия с оксидом серы (VI) в стандартных условиях ∆G<0, поэтому процесс самопроизвольный.


(298) = ∆Н(298)-Т∆(298)

(298) = -578560-298*(-581,79)=-405,19 кДж

% ош.=((-405,13+405,19)/(-405,13))*100=0,01% ,


т.к процент ошибки очень мал, следовательно, можно использовать для расчета оба метода.

Вывод: В закрытой системе изобарно-изотермический процесс будет протекать самопроизвольно, т.к. ∆G<0.

б) при заданной температуре


(450) = ∆Н(450)-450*∆(450)

(450) = -572390-450*(-565,32)=-317,996 кДж


При увеличении температуры на 152 К, энергия Гиббса увеличилась на 87,194 кДж, отсюда следует, что чем больше температура, тем больше энергия Гиббса. В закрытой системе изобарно-изотермический процесс остался самопроизвольным, т.к. ∆G<0. Дальнейшее повышение температуры не выгодно, т.к. ∆G стремится к нулю и процесс от самопроизвольного перейдет в равновесный, а затем в не самопроизвольный.

Расчет изохорно-изотермического потенциала (F):

а) в стандартных условиях

1 способ:






F = ∆U-T∆S

F(298)=-571130-298*(-581,79)=-397,76 кДж

2 способ:

F(298)=∆G-∆nRT

F(298)=-405,13-(-3)*298*0,008314=-397,7 кДж

%ош.=((-397,76+397,7)/(-397,76))*100=0,02%,


т.к процент ошибки очень мал, следовательно, можно использовать для расчета оба метода.

Вывод: В закрытой системе при стандартных условиях изохорно-изотермический процесс будет протекать самопроизвольно, т.к. ∆F<0.

б) при заданной температуре

1 способ:


F(450)= -561170-450*(-565,32)=-306,78 кДж

2 способ:

F(450)=-317,996-(-3)*450*0,008314=-306,78 кДж

%ош.=((-306,78-306,78)/(-306,78))*100=0%,


т.к процент ошибки равен нулю, следовательно, можно использовать для расчета оба метода.

Вывод: При увеличении температуры энергия Гельмгольца увеличилась. В закрытой системе изохорно-изотермический процесс будет протекать самопроизвольно.

Вывод:


Т, К

Н, кДж

U, кДж

G,кДж/моль

F, кДж

S, Дж

298

-578,56

-571,13

-405,19

-397,76

-581,79

450

-572,39

-561,17

-317,996

-306,78

-565,32





С увеличением температуры тепловые эффекты изобарно-изотермического и изохорно-изотермического процессов увеличились.

В данной работе ∆Н, ∆S, ∆G получились отрицательными, отсюда следует, что процесс протекает самопроизвольно, но при невысоких температурах.

При увеличении температуры энергия Гиббса и энергия Гельмгольца увеличились, значит система стремиться к равновесию (в условиях равновесия ∆F, ∆G достигают минимума).




2. Задание: Определить ΔH, ΔU, ΔS, ΔF, ΔG, реакции при постоянном давлении P=1.013 * 105 Па.


СdO(т) + H2SO4 (ж) = CdSO4 (т) + H2O (г)


Реакция протекает при температуре 511 градусов Цельсия .


Исходные данные

Вещест-во

ΔHf˚298

кДж/моль

S˚298

Дж/моль*К

ΔGf˚298

кДж/моль

Ср298

Дж/моль*К

Коэф. уравнения

Ср˚= f(T)

a

b * 103

c΄ * 10-5

H2O

-241,81

188,72

-228,61

33,61

30,00

10,71

0,33

CdO

-258,99

54,81

-229,33

43,64

48,24

6,38

-4,90

H2SO4

-813,99

156,90

-690,14

138,91

156,9

28,3

-23,46

Cd SO4

-934,41

123,05

-828,88

99,62

77,32

77,40

-


2.1 Расчёт теплового эффекта реакции


Расчёт теплового эффекта реакции в изобарном процессе в стандартных условиях


ΔНr˚ (298) = (ΔНf˚ (298) CdSO4 + ΔНf˚ (298) H2O) – (ΔНf˚ (298) CdO + ΔНf˚ (298) H2SO4)

ΔНr˚ (298) = (-934,41 – 241,81) – (-258,99 – 813,99) = -103,24 кДж.


Вывод: При реакции в стандартных условиях ,произошло выделение тепла в количестве 103,24 кДж как следствие реакция является экзотермической.

Расчёт теплового эффекта реакции в изобарном процессе при заданной температуре






ΔH(T) = ΔНr˚ (298) + ;

Δa = ( Δa CdSO4+ Δa H2O) - ( Δa CdO+ Δa H2SO4)

Δa = (77,32+30,00) – (48,94+156,90) = -97,82 ;

Δb = (Δb CdSO4+ Δb H2O) - (Δb CdO+ Δb H2SO4)

Δb = (77,40+10,71) – (6,38+28,30) = 53,43 * 10-3

Δc΄ =( Δc΄CdSO4+ Δc΄H2O) - (Δc΄CdO+ Δc΄H2SO4)

Δc΄ = (0 + 0.33) – (-4,90-23,46) = 28,69 * 105



Δc = 0, т.к. все вещества неорганические.


ΔH(511) = -103,24 * 103 + =

= -103,24 * 103 + (-97,82) * (511-298) + * (5112 – 2982) + -103240 – 20835,66 + 4603,45 + 4050,80 = -115,42 kДж.


Вывод: Увеличение температуры привело к увеличению количества теплоты выделившегося в следствии реакции.

Расчёт теплового эффекта реакции в изохорном процессе в стандартных условиях


ΔU = ΔН – ΔnRT

Δn = Δnкон.Δnнач

Δn=1-0=1


Газовая постоянная R = 8.314 Дж/моль*К






ΔU(298)= ΔНr˚ (298) Δn*R*T

ΔU(298) = -103,24 * 103 -1 * 8,314 * 298 = -103240 – 2477,57 = -105,72 кДж.


Вывод: Внутренняя энергия реакции в изохорном процессе составила 100,76 килоджоуля.

Расчёт теплового эффекта реакции в изохорном процессе при заданной температуре


ΔU(511)= ΔНr˚ (511) Δn*R*T

ΔU(511) = -115,42 * 103 - 1 * 8,314 * 511 = -115420 – 4248,45 = - 119,67 кДж.


Вывод: Как и в изобарном процессе увеличение температуры приводит к увеличению внутренней энергии реакции на 18,91 кДж.


2.2 Определение направления протекания химического процесса


Определение направления протекания данной реакции в изолированной системе

Определение направления протекания реакции в стандартных условиях


ΔS˚ (298) = (S (298) Cd SO4 + S (298) H2O) – (S(298) Cd O + S (298) H2SO4)

ΔS˚ (298) = (123,05+188,72)-( 54,81+156,90)= 100,06


Вывод: Так как энтропия S больше ноля 100,06>0 то процесс реакции в изолированной системе протекает самопроизвольно без внешнего воздействия. Определение направления протекания реакции при заданной температуре.





ΔS(T) = ΔS˚ (298) + ;

ΔS (511) = 100,06 + = 100,06 – 97,82 + 53,43 * 10-3 + 28,69 * 105 = 100,06 – 97,82 + 53,43 * 10-3 * (511-298) + * = 121,66


Вывод: Изменение температуры привело к увеличению энтропии по сравнению с процессом при стандартных условиях . Следовательно повышение температуры ведёт к увеличению неупорядоченности и увеличению количества соударений молекул при реакции.

Определение направления протекания химического процесса в закрытой системе

Расчёт изобарно – изотермического потенциала в стандартных условиях


ΔGr˚ (298) = (G (298) Cd SO4 + G (298) H2O) – (G (298) Cd O + G(298) H2SO4)

ΔGr˚ (298)= (-823,88 – 228.61) – (-229,33 – 690.14) = -133,02 кДж/моль.


Вывод: Изобарно – изотермический потенциал показывает что процесс в закрытой системе идёт самопроизвольно ΔGr˚ < 0 ; -133,02<0 .

Произведем расчет изобарно – изотермического потенциала по другой формуле:


ΔGr˚ (298) = ΔНr˚ (298) - Т* ΔS˚ (298)

ΔGr˚ (298) = -103,24 * 103 – 298 * 100,06 = -133,06 кДж/моль.


Найдем процент ошибки:





% ошибки =


Расчет можно производить любым способом, т.к. процент ошибки не существенен. Расчёт изобарно – изотермического потенциала при заданной температуре


ΔGr˚ (511) = ΔНr˚ (511) - Т* ΔS˚ (511)

ΔGr˚ (511) = -119,46 * 103 – 511 * 121,66 = -181,63 кДж/моль.


Вывод: Увеличение температуры никак не повлияло на процесс реакции в закрытой системе, она по прежнему идёт самопроизвольно ΔGr˚ < 0; -181,63<0. Расчёт изохорно – изотермического потенциала в стандартных условиях.


ΔF(298) = ΔU(298) – T* ΔS˚ (298)

ΔF(298) = -105,72 * 103 – 298 * 100,06 = -135,53 кДж.


Вывод: Изохорно – изотермический потенциал показывает что процесс в закрытой системе идёт самопроизвольно ΔF < 0 ; -135,53<0

Расчёт изохорно – изотермического потенциала при заданной температуре


ΔF(511) = ΔU(511) – T* ΔS˚ (511)

ΔF(511) = - 123,70 * 103 – 511 *121,66 = -185,87кДж.


Вывод: Изменение температуры привело к уменьшению потенциала по сравнению с процессом при стандартных условиях, а это означает что глубина реакции в закрытой системе увеличилась ΔF < 0 ; -185,87>0.



Вывод


Рассмотренная реакция оксида кадмия и серной кислоты идёт самопроизвольно на это указывают все характеристики реакции, а рассмотренное увеличение температуры реакции её ничуть не замедляет. Всё это позволяет сделать вывод о том что увеличение температуры реакции позволяет увеличить её глубину и полноту. При этом реакция останется самопроизвольной.


T, K

ΔH, кДж

ΔU, кДж

ΔS,

ΔG, кДж/моль

ΔF, кДж

298

-103,24

-105,72

100,06

-133,02

-135,53

511

-115,42

-119,67

121,66

-181,63

-185,87



Случайные файлы

Файл
26649-1.rtf
9962-1.rtf
12807.rtf
28535-1.rtf
121182.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.