Химические свойства альдегидов и кетонов. Присоединение кислородных нуклеофилов (166051)

Посмотреть архив целиком


Химические свойства альдегидов и кетонов. Присоединение кислородных нуклеофилов


Двойная связь С=О, подобно связи С=С, представляет собой комбинацию  - и -связей (они изоэлектронны). Однако, между этими двумя двойными связями имеются существенные различия:

- C=O значительно прочнее С=С;

- энергия связи С=О (179 ккал/моль) больше, чем энергия двух связей С-О (85.5 ккал/моль), в то время как энергия связи С=С (146 ккал/моль) меньше суммы энергий двух связей С-С (82.6. ккал/моль);

- связь С=О в отличие от С=С полярна.

При этом -связь поляризована сильнее, чем -связь. Таким образом, атом углерода карбонильной группы является электронодефицитным центром, а кислорода - электроноизбыточным.


 


Кроме тогo, карбонильная группа увеличивает кислотность атомов Н у соседнего атома С, приводя к увеличению кинетической кислотности (увеличению полярности связи С-Н из-за - I-эффекта карбонильной группы) и термодинамической кислотности (стабилизация образующегося карбаниона за счет мезомерного эффекта).

В молекулах карбонильных соединений имеется несколько реакционных центров.

Электрофильный центр  карбонильный атом углерода, возникновение частичного положительного заряда на котором обусловлено полярностью связи С=О. Электрофильный центр участвует в реакциях нуклеофильного присоединения.

Основный центр  атом кислорода с не поделенными парами электронов. С участием основного центра осуществляется кислотный катализ в реакциях присоединения, а также в процессе енолизации. Важно отметить, что альдегиды и кетоны являются жесткими основаниями Льюиса и координируются с жесткими кислотами: H+, BF3, ZnCl2, FeCl3 и т.д.

-СН-Кислотный центр, возникновение которого обусловлено индуктивным эффектом карбонильной группы. При участии СН-кислотного центра протекают многие реакции карбонильных соединений, в частности реакции конденсации.

Связь СН в альдегидной группе разрывается в реакциях окисления.

Ненасыщенные и ароматические углеводородные радикалы, подвергающиеся атаке электрофильными или нуклеофильными реагентами.



А. Присоединение воды

Альдегиды и кетоны обратимо присоединяют воду, давая гем-диолы, выделить которые, как правило, не удается. Например, формалин, используемый для консервации биологических объектов, представляет собой гидратную форму 40% -ного раствора формальдегида в воде.


(31)

формальдегидгидрат (>99%)


В формалине практически весь альдегид существует в гидратной форме. Альдегиды и кетоны, у которых по соседству с карбонильной группой находится электроноакцепторный заместитель, образуют устойчивые гидраты, например:



(32)

хлораль хлоральгидрат



Б. Присоединение спиртов  образование ацеталей.

Спирты обратимо присоединяются к альдегидам с образованием полуацеталей. В спиртовых растворах альдегидов полуацетали находятся в равновесии с карбонильными соединениями. Так, в этанольном растворе ацетальдегида содержится около 30% полуацеталя (в расчете на альдегид).


(33)

1-этоксиэтанол

(полуацеталь)


Полуацетали обычно не выделяют из реакционной смеси из-за их неустойчивости. Исключение составляют циклические полуацетали, образующиеся самопроизвольно из  - и -гидроксиальдегидов. Например, доля циклического полуацеталя в его равновесной смеси с 5-гидроксипентаналем составляет 94%.


(34)

5-оксипентаналь

(35)

4-оксипентаналь



Полуацетали при взаимодействии со второй молекулой спирта в присутствии сильных кислот и при условии удаления воды в результате реакции нуклеофильного замещения могут превращаться в полные ацетали.


(36)

1,1-диэтоксиэтан


(37)


Механизм образования ацеталей и кеталей на первом этапе AN, а на втором SN1.


(м 6)



Вместо двух молекул спирта можно использовать одну молекулу диола:


(38)

этилендиоксициклогексан


Ацетали обладают структурой простых эфиров и подобно простым эфирам устойчивы к щелочам и нуклеофильным реагентам, но гидролизуются водными кислотами, причем гораздо легче, чем простые эфиры: уже при комнатной температуре под действие разбавленных минеральных кислот:

Устойчивость ацеталей и кеталей к действию нуклеофильных реагентов позволяет защищать карбонильную группу при проведении реакции по другим группам с нуклеофильными реагентами. После чего карбонильную группу рекуперируют. Для такой защиты чаще всего используют этиленгликоль:




Присоединение серосодержащих нуклеофилов.

Атом серы тиолов является лучшим нуклеофилов, чем атом кислорода спиртов. Тиолы реагируют с карбонильными соединениями в кислой среде, образуя дитиоацетали.


(39)

1,1-ди(этилтио) этан (дитиоацеталь)


С этилендитио-1,2-диолом и 1,3-пропандитиолом образуются циклические тиоацетали.

При нагревании тиокеталей с никелем Ренея в спирте происходит десульфурирование, в результате чего исходная карбонильная группа превращается в метиленовую и таким образом достигается восстановление альдегидов и кетонов в углеводороды.


(40)

циклический тиокеталь


(41)

1,3-пропандитиол 1,3-дитиан

(циклический тиоацеталь)


Дитиоацетали обладают СН-кислотными свойствами (pKa 31), поэтому при действии сильных оснований, например, литийорганических соединений, они отщепляют протон, образуя карбанион, отрицательный заряд которого делокализуется при участии 3d-орбиталей атома серы. В результате происходит обращение полярности реакционного центра (Umpolung): карбонильный атом углерода (электрофильный центр) превращается в карбанион, обладающий нуклеофильными свойствами.

(42)

1,3-дитиан бутиллитий литиевая соль 1,3-дитиана


Далее карбанион алкилируется алкилгалогенидом, и после расщепления замещенного тиоацеталя образуется новое карбонильное соединение.

Дитиоацетали устойчивы к действию оснований и довольно трудно гидролизуются в кислой среде. Для их расщепления используют соединения ртути и кадмия.


(43)


Результатом всех этих превращений является превращение альдегида в кетон. Литиевая соль 1,3-дитиана реагирует и с альдегидами, давая в конечном итоге -оксикетон.


(44)


Упр. 11. Напишите структурные формулы соединений, обозначенных на схемах заглавными буквами.


(а)

(б)


Упр. 12. Каким образом показанные исходные продукты могут быть превращены в конечные с использованием 1,3-дитианов в качестве промежуточных продуктов?


(а) (б)


Г. Образование дисульфитных комплексов

Альдегиды и простейшие метилкетоны взаимодействуют с концентрированным раствором дисульфита натрия с образованием кристаллических веществ, обычно называемых дисульфитными производными альдегидов и кетонов. Дисульфитные производные плохо рстворимы и используются для отделения альдегидов и кетонов. Присоединение происходит в результате нуклеофильной атаки дисульфит-иона по карбонильному атому углерода с последующим присоединением иона водорода по карбонильному кислороду. Доказано, что дисульфит-анион реагирует местом с наибольшей нуклеофильной силой (по атому серы), а не местом с наибольшей электронной плотгностью (атом кислорода):



дисульфитное производное


(45)

1-гидроксипропан-1-сульфонат натрия


(46)


Подобно другим реакциям присоединения по карбонильной группе, эта реакция обратима. Нагревание дисульфитных комплексов с разбавленными кислотами или водным раствором карбоната натрия приводит к регенерации карбонильных соединений:


(47)


Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что с гидросульфитом натрия реагируют только метилкетоны, имеющие группу СН3СО-. Решающую роль в реакциях расщепления дисульфитных производных играет то факт, что сульфогруппа является хорошей уходящей группой. Она может замещаться и на другие нуклеофильные группы, например:


(48)


Упр. 13. Напишите реакции дисульфита натрия с (а) уксусным альдегидом,

(б) бензальдегидом и (в) ацетоном и опишите их механизм. Напишите реакции образующихся дисульфитных производных с цианидом натрия.

Упр.14. Завершите реакции:




(и)




Случайные файлы

Файл
2284-1.rtf
161670.rtf
ref12028.doc
102704.rtf
121795.rtf