Экономическая оценка финансовых инвестиций с использованием Excel (163172)

Посмотреть архив целиком

Тема 1. Процентные и дисконтные расчеты


Задача 1


Условие:

Капитал, величиной $2000 вложен с 6.07.93 по 6.07.96 под 100% годовых. Найти величину наращенного капитала.

Решение:

Предположим, что используется простой процент.


Тогда F = P * (1 + N * i),


где F – величина наращенного капитала.

F=2000*(1+3*1)=$8000.


Задача 2


Условие:

На сколько лет нужно вложить5000000 рублей при ставке 50% годовых, чтобы получить 80000000 рублей, при условии ежегодной капитализации процентов.

Решение:

Срок N вычислялся с использованием средств Microsoft Excel согласно следующей формуле:


КПЕР (j/m, 0,-P,F)/m, где


J – номинальная ставка

M – число начислений в году

Р – первоначальная сумма

F – конечная сумма

Значение функции КПЕР (0,5/1, 0,-5000000,80000000)/1=1,15


Задача 3


Условие:

16.09.96 учтен вексель сроком погашения 28.11.96. Вычислите номинальную стоимость векселя, если процентная ставка дисконтирования 100% годовых, а клиент получил 12000000.

Решение:

P=?

F=12000000

D=1

N=0.4

Расчет ведется в табличном процессоре по формуле многоразовой капитализации:


P=ПЗ (i/m, N*m, 0, -F)=ПЗ(1,0.4,0,-12000000)= 9 094 299,40р.


Задача 4


Условие:

Клиент вложил в банк 80 млн р на 6 лет. Определить сложную процентную ставку, если по истечении шести лет клиент получил 500 млн р.

Решение:

Р=80000000

N=6

F=500000000

I=?

Процентная ставка рассчитывалась в табличном редакторе по формуле

I=НОРМА (N,0,-P,F)=НОРМА(6,0,-80000000,500000000)=36%.


Задача 5


Условие:

Определите ставку непрерывных процентов при условии, что за 6 лет сумма выросла на 110%.

Решение:

J=?

N=6

F=1.1P


J=LN(F/P)/N*100%=LN(1.1P/P)/N*100%=LN(1.1)/6*100%=1.59%


Задача 6


Условие:

Найти эффективную ставку наращения соответствующую ставке непрерывной капитализации, равной 50% годовых.

Решение:

Сложный процент наращения рассмотрим в формуле:


F=P(1+i)^N, где


F – наращенная сумма

P – исходная сумма

I – процент

N – срок

Формула для непрерывной капитализации:


F=P*exp(j*N), где


J – ставка непрерывной капитализации и равна 0,5э

N примем за единицу, так как эффективная ставка – это годовая ставка сложных процентов с капитализацией процентов раз в год.

Таким образом, имеем две формулы:


F=P*exp(0.5) и F=P*(1+i),


откуда видно, что ставка наращения, соответствующая ставке капитализации может быть получена следующим образом: exp(0.5)=1+i или i=exp(0.5)-1=1.64-1=0.64

Таким образом I=64%


Задача 7


Условие:

Найти ставку наращения по сложным процентам, соответствующую эффективной ставке, равной 80 % годовых.

Решение:

Поскольку эффективная ставка – это и есть годовая ставка сложного процента с капитализацией раз в год, то ответом будет 80%.


Задача 8


Условие: Клиент вложил в банк 12000000 рублей на 3 года под 70 % годовых с капитализацией процентов 1 раз в полгода. За какой период он получил бы такую же сумму (при начальном вложении 12000000 рублей под 70 % годовых), если капитализация проводилась непрерывно?

Решение:

По формуле


F=P*(1+j/m)(N*m),


получим

F=12000000*(1+0.7/2)3*2= 72641341,69 рублей – наращенная сумма.

Для непрерывной капитализации срок рассчитывается по формуле


N=LN(F/P)/j=LN(72641341,69/12000000)/0.7=2,572325078 года.


Таким образом, при непрерывной капитализации, достаточно было бы двух с половиной лет.



Тема 2. Рентные расчеты


Задача 1


Условие:

Наращенная сумма ренты равна 500000, рента выплачивается ежегодно. Ставка 25% годовых, начисляемых в конце года. Найти современную величину ренты при условии, что рента выплачивается 7 лет.

Решение:

Рассматривается случай обычной ренты. Расчет ведется в табличном редакторе Microsoft Excel. Сначала рассчитывается выплата


Pmt=ППЛАТ(I;N;0;-S),


которая подставляется в формулу расчета современной величины ренты


А=ПЗ(I;N;-Pmt).


Итоговая таблица расчетов:

S

500000

I

0,25

N

7

Pmt

33 170,83р.

A

104 857,60р.


Задача 2


Условие: На счет фонда в начале каждого года на протяжении пяти лет поступают взносы по 1500 де. Начисление процентов поквартальное, номинальная ставка 25%. Определить накопленную сумму к концу срока.

Решение:

Имеем обычную ренту с многоразовой капитализацией.

Pmt=1500

M=4

J=0.25

N=5

S=?

Формула расчета в табличном процессоре:


БЗ(j/m; N* m;-Pmt)

S=------------------

БЗ(j/m; m; -1)


Итоговая таблица расчета:

j

0,25

N

5

Pmt

1 500

m

4

БЗ(j/m; N* m;-Pmt)

56 684,48р.

БЗ(j/m; m; -1)

4,39р.

S

12909,62686


Задача 3


Условие:

Имеется обязательство погасить в течении 10 лет долг, равный 8000 де. Под сколько процентов был выдан долг, если начисления производились поквартально и объем выплаты ежегодной суммы денег равняется 600 де.

Решение:

Для такого рода задач в табличном процессоре EXCEL имеется опция “ПОДБОР ПАРАМЕТРА” в меню “СЕРВИС”.

S=8000

N=10

M=4

Pmt=600

I=?

Используем формулу обычной ренты с многоразовой капитализацией.


БЗ(j/m; N* m;-Pmt)

S= ------------------

БЗ(j/m; m; -1)


i=

0,061037035


Задача 4


Условие:

Рассчитайте современную величину вечной ренты, член которой (10000 де) выплачивается в конце каждого месяца, процент равный 5% годовых начисляется 2 раза в год.

Решение:

J=0.05

M=2

Pmt=10000

P=12

Из условия задачи понятно, что процент начисляется на сумму 60000, которая была уплачена за полгода. Современная величина вечной ренты A=Pmt/I=60000/0.05= 1200000 де.



Задача 5


Условие: Пусть требуется выкупить (погасить единовременным платежом) вечную ренту, член которой (250000) выплачивается в конце каждого полугодия, процент, равный 25% годовых начисляется 4 раза в год. Рассчитайте современную величину вечной ренты.

Решение:


A=Pmt/i.


I=m*j=0.25*2. Это означает, что в полугодичный период процент составляет 50%. Таким образом, A=Pmt/I=250000/0.5=500000.


Задача 6


Условие:

Величина займа равна 200 млн. Амортизация проводится одинаковыми аннуитетами в течение 10 лет при ставке 45% годовых. Капитализация процентов производится ежегодно. Составьте план погашения займа.

Решение:

Составим план погашения задолженности.

D=200 млн

I=0.45

N=10


ПЛАН ПОГАШЕНИЯ ЗАДОЛЖЕННОСТИ

Метод: погашение долга равными суммами

Параметры долга

Долг

200000000

Процент

0,45

Срок

10

ГРАФИК ПОГАШЕНИЯ

Год

Остаток долга

Погашение долга

Проценты

Срочная уплата

Выплаченный долг

Выплаченные проценты

1

200000000

20000000

90000000

110000000

20000000

90000000

2

180000000

20000000

81000000

101000000

40000000

171000000

3

160000000

20000000

72000000

92000000

60000000

243000000

4

140000000

20000000

63000000

83000000

80000000

306000000

5

120000000

20000000

54000000

74000000

100000000

360000000

6

100000000

20000000

45000000

65000000

120000000

405000000

7

80000000

20000000

36000000

56000000

140000000

441000000

8

60000000

20000000

27000000

47000000

160000000

468000000

9

40000000

20000000

18000000

38000000

180000000

486000000

10

20000000

20000000

9000000

29000000

200000000

495000000


Случайные файлы

Файл
96763.rtf
12462.rtf
13402-1.rtf
EK-T.DOC
176915.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.