Лекции DOC (теория по терверу)

Посмотреть архив целиком

Вопрос№1

Основным интуитивным понятием классической теории вероятностей является случайное событие. События, которые могут произойти в результате опыта, можно подразделить на три вида:

а) достоверное событие – событие, которое всегда происходит при проведении опыта;

б) невозможное событие – событие, которое в результате опыта произойти не может;

в) случайное событие – событие, которое может либо произойти, либо не произойти.

Алгебра событий:

1)Суммой А+В двух событий А и В называют событие, состоящее в том, что произошло хотя бы одно из событий А и В. Суммой нескольких событий, соответ-ственно, называется событие, заключающееся в том, что произошло хотя бы одно из этих событий.

Назовем все возможные результаты данного опыта его исходами и предположим, что множество этих исходов, при которых происходит событие А (исходов, благоприятных событию А), можно представить в виде некоторой области на плоскости. Тогда множество исходов, при которых произойдет событие А+В, является объединением множеств исходов, благоприятных событиям А или В (рис. 1).




А В А + В



Рис.1.

2) Произведением АВ событий А и В называется событие, состоящее в том, что произошло и событие А, и событие В. Аналогично произведением нескольких событий называется событие, заключающееся в том, что произошли все эти события

Геометрической иллюстрацией множества исходов опыта, благоприятных появлению произведения событий А и В, является пересечение областей, соответствующих исходам, благоприятным А и В.





А В АВ



Рис.2.

3) Разностью А\B событий А и В называется событие, состоящее в том, что А произошло, а В – нет.






А В А - В



Рис.3.

4) . События А и В называются совместными, если они могут произойти оба в результате одного опыта. В противном случае (то есть если они не могут произойти одновременно) события называются несовместными.

Примеры: совместными событиями являются попадания двух стрелков в примере 1 и появление карты пиковой масти и дамы в примере 4; несовместными – события А1 – А6 в примере 2.

5) Говорят, что события А1, А2,…,Ап образуют полную группу, если в результате опыта обязательно произойдет хотя бы одно из событий этой группы.


Замечание. В частности, если события, образующие полную группу, попарно несовмест-ны, то в результате опыта произойдет одно и только одно из них. Такие события называют элементарными событиями.

6) . События называются равновозможными, если нет оснований считать, что одно из них является более возможным, чем другое.

Классическое определение вероятности.

При изучении случайных событий возникает необходимость количественно сравнивать возможность их появления в результате опыта. Например, при последовательном извлечении из колоды пяти карт более возможна ситуация, когда появились карты разных мастей, чем появление пяти карт одной масти; при десяти бросках монеты более возможно чередование гербов и цифр, нежели выпадение подряд десяти гербов, и т.д. Поэтому с каждым таким событием связывают по определенному правилу некоторое число, которое тем больше, чем более возможно событие. Это число называется вероятностью события и является вторым основным понятием теории вероятностей.

Отметим, что само понятие вероятности, как и понятие случайного события, является аксиоматическим и поэтому не поддается строгому определению. То, что в дальнейшем будет называться различными определениями вероятности, представляет собой способы вычисления этой величины.

. Вероятностью события А называется отношение числа исходов опыта, благоприятных этому событию, к числу возможных исходов:

- классическое определение вероятности.

Основные формулы комбинаторики.

При вычислении вероятностей часто приходится использовать некоторые формулы комбинаторики – науки, изучающей комбинации, которые можно составить по определенным правилам из элементов некоторого конечного множества. Определим основные такие комбинации.

Определение 1.10. Перестановки – это комбинации, составленные из всех п элементов данного множества и отличающиеся только порядком их расположения. Число всех возможных перестановок

Рп = п!

Определение 1.11. Размещения – комбинации из т элементов множества, содержащего п различных элементов, отличающиеся либо составом элементов, либо их порядком. Число всех возможных размещений

Определение 1.12. Сочетания – неупорядоченные наборы из т элементов множества, содержащего п различных элементов (то есть наборы, отличающиеся только составом элементов). Число сочетаний



Вопрос№2

Диаграммы Вена:



Алгебра событий:

1)Суммой А+В двух событий А и В называют событие, состоящее в том, что произошло хотя бы одно из событий А и В. Суммой нескольких событий, соответ-ственно, называется событие, заключающееся в том, что произошло хотя бы одно из этих событий.

Назовем все возможные результаты данного опыта его исходами и предположим, что множество этих исходов, при которых происходит событие А (исходов, благоприятных событию А), можно представить в виде некоторой области на плоскости. Тогда множество исходов, при которых произойдет событие А+В, является объединением множеств исходов, благоприятных событиям А или В (рис. 1).




А В А + В



Рис.1.

2) Произведением АВ событий А и В называется событие, состоящее в том, что произошло и событие А, и событие В. Аналогично произведением нескольких событий называется событие, заключающееся в том, что произошли все эти события

Геометрической иллюстрацией множества исходов опыта, благоприятных появлению произведения событий А и В, является пересечение областей, соответствующих исходам, благоприятным А и В.





А В АВ



Рис.2.

3) Разностью А\B событий А и В называется событие, состоящее в том, что А произошло, а В – нет.






А В А - В



Рис.3.

4) . События А и В называются совместными, если они могут произойти оба в результате одного опыта. В противном случае (то есть если они не могут произойти одновременно) события называются несовместными.

Примеры: совместными событиями являются попадания двух стрелков в примере 1 и появление карты пиковой масти и дамы в примере 4; несовместными – события А1 – А6 в примере 2.

5) Говорят, что события А1, А2,…,Ап образуют полную группу, если в результате опыта обязательно произойдет хотя бы одно из событий этой группы.


Определение 1.8. Вероятностью события А называется отношение числа исходов опыта, благоприятных этому событию, к числу возможных исходов:

- классическое определение вероятности

Свойства вероятности.

Свойство 1. Вероятность достоверного события равна единице.

Доказательство. Так как достоверное событие всегда происходит в результате опыта, то все исходы этого опыта являются для него благоприятными, то есть т = п, следовательно,

Р(А) = 1.

Свойство 2. Вероятность невозможного события равна нулю.

Доказательство. Для невозможного события ни один исход опыта не является благопри-ятным, поэтому т = 0 и р(А) = 0.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Доказательство. Случайное событие происходит при некоторых исходах опыта, но не при всех, следовательно, 0 < m < n, и из (1.1) следует, что 0 < p(A) < 1.

Вопрос№3

Определение 1.9. Статистической вероятностью события считают его относительную частоту или число, близкое к ней.


Замечание 1. Из формулы (1.2) следует, что свойства вероятности, доказанные для ее классического определения, справедливы и для статистического определения вероят-ности.

Замечание 2. Для существования статистической вероятности события А требуется:


Случайные файлы

Файл
121221.rtf
60788.rtf
139311.doc
146558.doc
116384.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.