тряпки шпоры (тряпки4)

Посмотреть архив целиком

Глава 12. МАТЕРИАЛЫ С МАЛОЙ ПЛОТНОСТЬЮ

Материалы с малой плотностью (лег­кие материалы) широко применяют в авиации, ракетной и космической тех­нике, а также в автомобилестроении, су­достроении, строительстве и других от­раслях промышленности. Применение легких материалов дает возможность снизить массу, увеличить грузоподъем­ность летательных аппаратов без сниже­ния скорости и дальности полета, повы­сить скорость движения автомобилей, судов, железнодорожного транспорта.

К основным конструкционным лег­ким металлам относятся пластмассы, цветные металлы Mg, Be, Al, Ti и сплавы на их основе, а также компо­зиционные материалы. Особенно пер­спективны материалы, которые дают возможность снизить массу конструк­ций при одновременном повышении их прочности и жесткости. Основными критериями при выборе конструк­ционных материалов в этом случае являются удельные прочность Ов/(р^) и жесткость E/(pg). По этим характери­стикам легкие материалы неравноценны (табл. 12.1).




Среди сплавов на основе Al, Mg и пластмасс лишь отдельные группы имеют такие свойства, которые указаны в табл. 12.1, а большинство не обладает высокими прочностью, удельной проч­ностью и удельной жесткостью. Эти ма­териалы предназначены главным обра­зом для изготовления мало- и среднена-груженных деталей.

Материалы с высокой удельной проч­ностью (сплавы Ti, Be, композиционные материалы) предназначены в основном для изготовления высоконагруженных деталей. Они рассмотрены в гл. 13.

12.1. Сплавы на основе алюминия

Свойства алюминия. Алюминий-металл серебристо-белого цвета. Он не имеет поли­морфных превращений и кристаллизируется в решетке гранецентрированного куба с пе­риодом а == 0,4041 нм.

Алюминий обладает малой плотностью, хорошими теплопроводностью и электро­проводимостью (см. гл. 1.5), высокой пла­стичностью и коррозионной стойкостью (см. гл. 14.1). Примеси ухудшают все эти свой­ства.

Постоянные примеси алюминия Fe, Si, Cu, Zn, Ti. В зависимости от содержания приме­сей первичный алюминий подразделяют на три класса: особой чистоты А999 (:$ 0,001% примесей), высокой чистоты А995, А99, А97, А95 (0,005-0,05% примесей) и технической чистоты А85, А8 и др. (0,15 1 % примесей). Технический алюминий, выпускаемый в виде деформируемого полуфабриката (листы, про­фили, прутки и др.), маркируют А ДО и АД1. Механические свойства алюминия зависят от его чистоты и состояния. Увеличение содер­жания примесей и пластическая деформация повышают прочность и твердость алюми­ния (табл. 12.2).

Ввиду низкой прочности алюминий при­меняют для ненагруженных деталей и эле­ментов конструкций, когда от материала

требуется легкость, свариваемость, пластич­ность. Так, из него изготовляют рамы, две­ри, трубопроводы, фольгу, цистерны для перевозки нефти и нефтепродуктов, посуду и др. Благодаря высокой теплопроводности он используется для различных теплообмен­ников, в промышленных и бытовых холо­дильниках. Высокая электропроводимость алюминия способствует его широкому при­менению для конденсаторов, проводов, кабе­лей, шин и др. (см. п. 17.1).

Из других свойств алюминия следует от­метить его высокую отражательную способ­ность, в связи с чем он используется для прожекторов, рефлекторов, экранов телеви­зоров. Алюминий имеет малое эффективное поперечное сечение захвата нейтронов (см, п. 14.5). On хорошо обрабатывается давле­нием, сваривается газовой и контактной сваркой, но плохо обрабатывается резанием. Алюминий имеет большую усадку затверде­вания (6 %). Высокая теплота плавления и те­плоемкость способствуют медленному осты­ванию алюминия из жидкого состояния, что дает возможность улучшать отливки из алю­миния и его сплавов путем модифицирова­ния, рафинирования и других технологиче­ских операций.

Общая характеристика и классифика­ция алюминиевых сплавов. (Алюми­ниевые сплавы характеризуют высокой удельной прочностью, способностью со­противляться инерционным и динамиче­ским нагрузкам, хорошей технологич­ностью.) Временное сопротивление алю­миниевых сплавов достигает 500—700

МП а при плотности не более 2850 кг/м3. По удельной прочности неко­торые алюминиевые сплавы (cSy/(pg) = = 23 км) приближаются или соот­ветствуют высокопрочным сталям (Oy/(pg) = 27 км). Большинство алюми­ниевых сплавов имеют хорошую корро­зионную стойкость (за исключением сплавов с медью), высокие теплопровод­ность и электропроводимость и хоро­шие технологические свойства (обра­батываются давлением, свариваются то­чечной сваркой, а специальные - сваркой плавлением, в основном хорошо обра­батываются резанием). Алюминиевые сплавы пластичнее магниевых и многих пластмасс. Большинство из них превос­ходят магниевые сплавы по коррозион­ной стойкости, пластмассы-но стабиль­ности свойств.

Основными легирующими элемента­ми алюминиевых сплавов являются Си, Mg, Si, Mn, Zn; реже-Li, Ni, Ti. Многие легирующие элементы образуют с алю­минием твердые растворы ограничен­ной переменной растворимости и про­межуточные фазы: CuAl^, Mg^Si и др. (рис. 12.1). Это дает возможность под­вергать сплавы упрочняющей термиче­ской обработке. Она состоит из закалки на пересыщенный твердый раствор

и естественного или искусственного ста­рения (см. п. 5.4).

Легирующие элементы, особенно переходные, повышают температуру ре­кристаллизации алюминия (рис. 12.2). При кристаллизации они образуют с алюминием пересыщенные твердые растворы. В процессе гомогенизации и горячей обработки давлением проис­ходит распад твердых растворов с обра­зованием тонкодисперсных частиц ин-терметаллидных фаз, препятствующих прохождению процессов рекристаллиза­ции и упрочняющих сплавы. Это явле­ние получило название структурного упрочнения, а применительно к прес­сованным полуфабрикатам - пресс-эф­фекта. По этой причине некоторые алю­миниевые сплавы имеют температуру рекристаллизации выше температуры закалки. Для снятия остаточных напря­жений в нагартованных полуфабрикатах (деталях), полученных холодной обра­боткой давлением, а также в фасонных отливках проводят низкий отжиг. Тем­пература отжига находится в пределах 150-300°С.

Конструкционная прочность алюми­ниевых сплавов зависит от примесей Fe и Si. Они образуют в сплавах нераство­римые в твердом растворе фазы: РеА1з, а(А1, Fe, Si), р(А1, Fe, Si) и др. Независи­мо от формы (пластинчатой, игольчатой и др.) кристаллы этих фаз снижают пла­стичность, вязкость разрушения, сопро­тивление развитию трещин. Легирова­ние сплавов марганцем уменьшает вред­ное влияние примесей, так как он связывает их в четвертую фазу ot(Al, Fe, Si, Mn), кристаллизирующуюся в ком­пактной форме. Однако более эффек­тивным способом повышения конструк­ционной прочности является снижение содержания примесей с 0,5-0,7 % (ГОСТ 4784-74) до 0,1-0,3% (чистый сплав), а иногда и до сотых долей процента (сплав повышенной чистоты). В первом случае к марке сплава добавляют букву ч, например, Д16ч, во втором - пч, на­пример, В95пч. Особенно значительно повышаются характеристики пластично­сти и вязкости разрушения в направле­нии, перпендикулярном пластической деформации. Например, ударная вяз­кость сплава Д16ч после естественного старения более чем в 2 раза, а относи­тельное удлинение в 1,5 раза выше, чем у сплава Д16 после той же обработки. Для сплава Д16ч коэффициент К^^= =43-46 МПа-м^2, тогда как для сплава Д16 он равен 35-36 МПа-м^2. Сплавы повышенной чистоты исполь­зуют для ответственных нагруженных деталей, например, для силовых элемен­тов конструкции пассажирских и транс­портных самолетов.

Алюминиевые сплавы классифици­рую!' по технологии изготовления (де­формируемые, литейные, спеченные), способности к термической обработке (упрочняемые и неупрочняемые) и свой­ствам (см. рис. 12.1).

Деформируемые алюминиевые сплавы. К сплавам, неупрочняемым термической обработкой, относятся сплавы AM ц и АМг (табл. 12.3). Сплавы отличаются высокой пластичностью, хорошей сва­риваемостью и высокой коррозионной стойкостью (см. гл. 14.1).

Сплавы АМц относятся к системе А1-Мп (рис. 12.3, я). Структура сплана АМц состоит из а-твердого расгиора и вторичных выделений фазы МпА1„, переходящих в твердый раствор при по­вышении температуры. В присутствии железа вместо MnAlg образуется слож­ная тройная фаза (MnFc)Al„, нракти-

чески нерастворимая в алюминии, по­этому сплав АМц не упрочняется тер­мической обработкой. В отожженном состоянии сплав обладает высокой пла­стичностью и низкой прочностью. Пла­стическая деформация упрочняет сплавы почти в 2 раза.

Сплавы АМг относятся к системе А1 - Mg (см. рис. 12.3, б). Магний образует с алюминием а-твердый раствор, кон­центрация которого при повышении температуры увеличивается от 1,4 до 17,4% в результате растворения фазы Mg,Al3. Однако сплавы, содержащие до 7% Mg, дают очень незначительное упрочнение при термической обработке. Вследствие этого сплавы АМг, как и АМц, упрочняют с помощью пласти­ческой деформации и используют в на-гартованном (АМгН - 80 % наклепа)

и полунагартованном (АМгП-40% на­клепа) состояниях.

Однако применение наклепа ограни­чено из-за резкого снижения пластично­сти сплавов, поэтому их используют в отожженном (мягком-АМгМ) состоя­нии. Сплавы АМц и АМг отжигают при температуре 35СМ20°С. При повыше­нии содержания магния в структуре сплавов АМг увеличивается количество фазы Mg^Al,. При этом временное со­противление повышается от 110 МПа (АМг1) до 430 МПа (АМгб) при соответ­ствующем снижении относительного уд­линения с 28 до 16%. Легирование маг­нием, кроме того, вызывает склонность к окислению во время плавки, разливки и кристаллизации, что приводит к по­явлению оксидных пленок в структуре и снижению механических свойств. По­этому сплавы с высоким содержанием магния (АМгб, АЛ27) для устранения склонности к окислению легируют бе­риллием. Укрупнение зерна, вызванное бериллием, устраняется добавкой тита­на или циркония.

Сплавы типа АМц и АМг применяют для изделий, получек'М1..1Х глубокой вы­тяжкой, сваркой, oi когорых требуется высокая коррозионная стойкость (тру­бопроводы для бензина и масла, сварные баки), а также для заклепок, переборок, корпусов и мачт судов, лиф­тов, узлов подъемных кранов, рам ваго­нов, кузовов автомобилей и др.


Случайные файлы

Файл
81052.rtf
2239-1.rtf
26888.rtf
17244-1.rtf
180948.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.