Самостоятельная нагрузка (151902)

Посмотреть архив целиком














Самостоятельная нагрузка




1. Биполярный транзистор


Биполярный транзистор – трехэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и pnp транзисторы (n (negative) – электронный тип примесной проводимости, p (positive) – дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» – «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора – большая площадь p – n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.

Устройство и принцип действия


Упрощенная схема поперечного разреза биполярного NPN транзистора


Первые транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. Последние транзисторы используются в схемах высокочастотных усилителей. Биполярный транзистор состоит из трех различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база, поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор).

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим n-p-n транзистор, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора[1]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они – неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент б, связывающий ток эмиттера и ток коллектора (Iк = б Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента б 0.9 – 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен в = б / (1 − б) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.


Простейшая наглядная схема устройства транзистора


Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база – в обратном (закрыт)

UЭБ>0; UКБ<0;

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход – прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмитерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя диод, включенный последовательно с резистором. Подобные схемы каскадов отличаются малым количеством комплектующих схему элементов, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, неразборчивостью к параметрам транзисторов.


Обозначение биполярных транзисторов на схемах

Основные параметры:

коэффициент передачи по току;

входное сопротивление;

выходная проводимость;

обратный ток коллектор-эмиттер;

время включения;

предельная частота коэффициента передачи тока базы.

Технология изготовления транзисторов:

эпитаксиально-планарная;

сплавная;

диффузионный;

диффузионно-сплавной.

Применение транзисторов

усилители, каскады усиления;

генератор;

модулятор;

демодулятор (Детектор);

инвертор Микросхемы на транзисторной логике.


2. Принцип действия транзисторов и схема его включения


Принцип работы транзистора состоит во взаимодействии токов диффузии (тонкая база) и проводимости (под действием электрического поля), это типа биполярного транзистора, а полевого – в перекрытии канала проводимости в полупроводнике электрическим полем затвора. В отличии от диодов с p-n переходом, то транзистор работает на p-n-p переходе с тремя ногами. Принцип его работы такой, что одной ногой можно управлять напряжением (именно напряжением) перехода другой связки.

Принцип работы транзистора

Традиционной планарный транзистор представляет собой крохотную кремневую пластинку, обогащенную примесью р-типа и называемую подложкой. В подложке формируются две легированные области, обогащенные примесью n-типа. Одна такая область называется стоком, а другая – истоком. На границе областей n-р происходят весьма любопытные физические процессы: за счет вездесущей диффузии пограничные электроны из n-областей перескакивают в р-область, богатую свободными дырками. Не сделав и пары шагов, электрон «проваливается» в первую же встретившуюся на его пути дырку. Если же ему удастся выскочить оттуда, он тут же захватывается другой свободной дыркой (а свободных дыр В р-области очень много). Часть этих дырок под давлением диффузных обстоятельств срывается с насиженного места и эмигрирует в n-обдасть, где их уже ждет толпа «голодных» электронов, и после непродолжительной рекомбинации здесь не остается ни дырок, ни электронов (разумеется, электроны никуда не исчезают, но, попав в дырки, теряют подвижность и перестают быть свободными).

Таким образом, на границах областей n-р образуется обедненная зона, в которой отсутствуют носители заряда, и потому течение тока между истоком и стоком оказывается невозможным. Для того чтобы транзистор мог переносить заряд, конструкторам пришлось добавить третий электрод – затвор. В отличие от устройства биполярных транзисторов, верой и правдой служивших в отечественной бытовой аппаратуре с восьмидесятых годов, затвор электрически не связан с р-областью и отделен от нее тонким слоем изолятора (в роли которого обычно выступает оксид кремния). Управление переносом заряда осуществляется не электрическим током, а электромагнитным полем. При подаче положительного потенциала на затвор создаваемое им электромагнитное поле вытесняет дырки вглубь подложки и затягивает в обедненный слой электроны из окружающих n-областей. Через короткое время пространство между n-областями насыщается свободными носителями заряда, в результате чего в подзатворной области образуется насыщенный канал, способный беспрепятственно проводить электрический ток. Такое состояние транзистора условно называют открытым. При исчезновении потенциала на затворе канал быстро забивается дырками, набежавшими из р-слоя. Электроны проваливаются в дырки, и проводимость канала начинает катастрофически падать. В конце концов канал разрушается, и транзистор переходит в закрытое (запертое) состояние.




На рисунке показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер – Э, база – Б, коллектор – К. Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т.е. общий для входа, выхода и источника питания.

Каскад с общим эмиттером обладает высоким усилением по напряжению и току. К недостаткам данной схемы включения можно отнести невысокое входное сопротивление каскада. К преимуществам – высокий коэффициент усиления.

Рассмотрим работу каскада подробнее: при подаче на базу входного напряжения – входной ток протекает через переход «база-эмиттер» транзистора, что вызывает открывание транзистора и, вследствие этого, увеличение коллекторного тока. В цепи эмиттера транзистора протекает ток, равный сумме тока базы и тока коллектора. На резисторе в цепи коллектора, при прохождении через него тока, возникает некоторое напряжение, величиной значительно превышающей входное. Таким образом, происходит усиление транзистора по напряжению. Так как ток и напряжение в цепи – величины взаимосвязанные, аналогично происходит и усиление входного тока.

Схема с общим коллектором обладает высоким входным и низким выходным сопротивлениями. Коэффициент усиления по напряжению этой схемы всегда меньше 1. Данная схема используется для согласования каскадов, либо в случае использования источника входного сигнала с высоким входным сопротивлением. В качестве такого источника можно привести, например, пьезоэлектрический звукосниматель или конденсаторный микрофон.

Схема включения транзистора с общей базой используется преимущественно в каскадах усилителей высоких частот. Данное включение транзистора позволяет более полно использовать частотные характеристики транзистора при минимальном уровне шумов. Что такое частотная характеристика транзистора? Это – способность транзистора усиливать высокие частоты, близкие к граничной частоте усиления, Эта величина зависит от типа транзистора. Более высокочастотный транзистор способен усиливать и более высокие частоты. С повышением рабочей частоты, коэффициент усиления транзистора понижается. Если для построения усилителя использовать, например, схему с общим эмиттером, то при некоторой (граничной) частоте каскад перестает усиливать входной сигнал. Использование этого – же транзистора, но включенного по схеме с общей базой, позволяет значительно повысить граничную частоту усиления. Каскад, собранный по схеме с общей базой, обладает низким входным и невысоким выходным сопротивлениями (эти параметры очень хорошо согласуются при работе в антенных усилителях с использованием так называемых «коаксиальных» несимметричных высокочастотных кабелей, волновое сопротивление которых, как правило, не превышает 100 Ом).


3. Входная и выходная характеристика транзистора (графики)

транзистор прибор трехэлектродный биполярный

Выходная характеристика транзистора КТ315Б


Входная характеристика транзистора КТ315Б


Размещено на Allbest.ru


Случайные файлы

Файл
125631.rtf
46735.rtf
132620.rtf
113988.rtf
104217.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.