Основные электроматериалы (151811)

Посмотреть архив целиком

Задания контрольной работы


1. Перечислить основные механизмы поляризации с указанием их главных особенностей. Приведите классификацию диэлектриков по виду поляризации. Назвать по 5-6 диэлектриков, относящихся к каждой группе, и указать значение диэлектрической проницаемости каждого названного диэлектрика

2. Объяснить, в чем заключается различие между понятиями "тангенс угла диэлектрических потерь" и "коэффициент диэлектрических потерь"

3. Синтетические и искусственные волокна. Их свойства и области применения в электропромышленности

4. Описать следующие материалы: вольфрам, золото, серебро, платину, никель, кобальт, свинец

5. Трубка из поливинилхлорида имеет размеры: внутренний диаметр d1=1,45 мм и внешний диаметр d2=4,5 мм. Построить графики зависимости диэлектрических потерь в температурном диапазоне от Т1=-200 С до Т2=600С: а) при постоянном напряжении U=1,5 кВ; б) при переменном напряжении U=1,5 кВ (действующее значение) частотой 50 Гц



1. Перечислить основные механизмы поляризации с указанием их главных особенностей. Приведите классификацию диэлектриков по виду поляризации. Назвать по 5-6 диэлектриков, относящихся к каждой группе, и указать значение диэлектрической проницаемости каждого названного диэлектрика


Поляризация – ограниченное смещение, связанных зарядов или ориентация дипольных молекул под действием внешнего электрического поля, при этом внутри диэлектрика создается собственное поле, направленное в сторону строго противоположную внешнему полю.

Основные виды поляризации

Величина заряда, накопленная в конденсаторе со сложным диэлектриком, обусловлена суммой различных механизмов поляризации, присущих данному диэлектрику.

Поэтому эквивалентной схемой замещения диэлектрика, в которой проявляются различные виды поляризации, служит ряд емкостей, включенных параллельно источнику питания (см. рис. 1,1).


Рисунок 1.1 – Эквивалентная схема замещения диэлектрика с различными видами поляризации


Заряд и емкость соответствуют собственному полю электродов, если между ними нет диэлектрика (вакуум).

электронная поляризация;

ионная поляризация;

электронно-релаксационная поляризация;

ионно-релаксационная поляризация;

дипольно-релаксационная поляризация;

миграционная поляризация;

спонтанная поляризация (самопроизвольная);

обобщенное сопротивление изоляции диэлектрика сквозному току утечки.

Электронная поляризация

Электронная поляризация представляет упругое смещение и деформацию электронных оболочек атомов и ионов. Время установления электронной поляризации очень маленькое и составляет с.

Величина примерно равна квадрату показателя преломления света в данной среде:


,


где – справочная величина, установленная для каждого материала.

Смещение и деформация электронных оболочек атомов и ионов, как явление, не зависит от температуры нагрева диэлектрика. Однако, с повышением температуры в связи с температурным расширением плотность материала уменьшается, число частиц в единице объема уменьшается и способность к поляризации также уменьшается (см. рис. 7.9).



Рисунок 1.2 – Температурная зависимость для электронной поляризации


Наиболее резкие изменения диэлектрической проницаемости от температуры характерны диэлектрикам (твердым и жидким) при достижении температуры фазового перехода (из твердого в жидкое, см. рис. 1.2; из жидкого в газообразное).

Температурная зависимость характеризуется температурным коэффициентом :


, 1/К


Температурный коэффициент может быть как положительным, так и отрицательным, например, для парафина отрицательный (см. рис. 1.2).

Электронная поляризация в чистом виде наблюдается в нейтральных диэлектриках.

Очень важно знать поведение диэлектрика и изменение диэлектрической проницаемости в переменных полях с изменяющейся частотой. Для электронной поляризации характерным является то, что диэлектрическая проницаемость не зависит от частоты изменения поля (см. рис. 1.3). Это объясняется тем, что время установления поляризации очень мало.


Рисунок 1.3 – Частотная зависимость для диэлектриков с чисто электронной поляризацией


Электронная поляризация наблюдается у всех видов диэлектриков, и не связана с рассеиванием энергии.

Ионная поляризация

Ионная поляризация характерна для твердых диэлектриков с ионным строением, и обуславливается упругим смещением ионов на расстояния меньшие постоянной решетки.

Наблюдается в веществах кристаллического строения с плотной упаковкой ионов. Время установления поляризации мало и составляет с.

С увеличением температуры поляризация возрастает, поскольку температурное расширение, удаляя ионы, друг от друга ослабляет действующие между ними упругие силы, т.е. для ионных соединений характерен положительный температурный коэффициент . Для диэлектрика с ионным строением имеет смысл рассматривать температурную зависимость в пределах твердого состояния (см. рис. 1.4). При расплавлении ионные соединения становятся проводниками второго рода.



Рисунок 1.4 – Температурная зависимость для диэлектриков с ионной поляризацией


Материалы с ионным строением с плотной упаковкой ионов отличаются тем, что их диэлектрическая проницаемость не зависит от частоты изменения поля, так как время установления поляризации очень мало.

Ионная поляризация не сопровождается затратами энергии и поэтому в схеме замещения отсутствует активный элемент – резистор.

Дипольно-релаксационная поляризация

Дипольно-релаксационная поляризация связана с ориентацией дипольных молекул, т.е. полярных молекул под действием электрического поля. Она возможна, если молекулярные силы не препятствуют ориентации диполей вдоль поля. Материалы с дипольно-релаксационной поляризацией характеризуются временем релаксации , которое фактически является временем саморазряда конденсатора.

Время релаксации – это время в течение, которого ориентация дипольных молекул после снятия электрического поля уменьшается в е раз, т.е. в 2,7 раза по сравнению с первоначальным значением (см. рис. 7.12). Время релаксации является внутренним параметром диэлектрика с дипольно-релаксационной поляризацией, которое существенно зависит от плотности вещества или вязкости вещества. При более высокой температуре вязкость вещества уменьшается и время релаксации уменьшается.


Рисунок 1.5 – Процесс заряда и разряда конденсатора. Графический способ определения времени методом касательной


C увеличением температуры: с одной стороны молекулярные силы ослабевают и это усиливает поляризацию, а с другой стороны постепенно начинает нарастать тепловое хаотическое движение. Оно разрушает поляризацию.

В результате температурной зависимости наблюдается максимум (см. рис. 1.6).


Рисунок 1.6 – Температурная зависимость для диэлектриков с дипольно-релаксационной поляризацией для разныхфиксированных частот и



Максимум для дипольно-релаксационной поляризации наблюдается тогда, когда время релаксации будет равно полупериоду действующего поля:


,


где – частота изменения электрического поля, Гц.

С повышением частоты максимум в температурной зависимости смещается в область высоких температур, так как большая частота требует меньшего времени релаксации, а меньшее время релаксации может быть получено при более высокой температуре.

Частотная зависимость у диэлектриков с дипольно-релаксационной поляризацией существенно отличается от частотной зависимости диэлектриков с электронной и ионной поляризацией. В данном случае определяется суммарным действием дипольно-релаксационной и электронной поляризаций (см. рис 1.7).


Рисунок 1.7 – Частотная зависимость для диэлектриков с дипольно- релаксационной поляризацией


По мере увеличения частоты дипольные молекулы могут не успевать ориентироваться за изменением электрического поля. В этом случае величина диэлектрической проницаемости снижается до уровня электронной поляризации, которая по максимуму не превосходит 2,5. Этому случаю соответствует определенная граничная частота , которую можно найти из выражения:


.


С повышением температуры, например, с до граничная частота увеличивается, так как при большей температуре вязкость вещества уменьшается и время релаксации также уменьшается. В соответствии с приведенным ранее условием четко видно, что граничная частота должна быть больше.

Данный вид поляризации сопровождается значительными потерями, поэтому в схеме замещения последовательно с емкостью включается активный элемент – резистор.

Электронно-релаксационная поляризация

Электронно-релаксационная поляризация отличается от электронной и ионной поляризаций и возникает вследствие возбуждения тепловой энергией избыточных (дефектных) электронов или "дырок".

Электронно-релаксационная поляризация характерна для диэлектриков с высоким показателем преломления света , большим внутренним полем и электронной электропроводностью. Например: диоксид титана, загрязненный примесями (ниобий), (кальций), (барий); некоторые соединения на основе оксидов металлов переменной валентности – титана, ниобия, висмута.

При электронно-релаксационной поляризации может иметь место более высокое значение диэлектрическая проницаемость , по сравнению с чисто электронной поляризацией, а также наличие максимума в температурной зависимости .


Случайные файлы

Файл
64612.rtf
82675.rtf
152997.rtf
LiveEtica.doc
151698.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.