Электрофизические процессы в электрических аппаратах (151222)

Посмотреть архив целиком

Назначение и виды электрических и электронных аппаратов


Электрические и электронные аппараты осуществляют управление потоком энергии от источника к потребителю. Они применяются в системах производства и распределения электрической энергии, в системах электроснабжения всех видов производства, в том числе и в системах электроснабжения электрического транспорта. Электрические и электронные аппараты наряду с электрическими машинами являются основными средствами электрификации и автоматизации. Стоимость их нередко оказывается соизмеримой со стоимостью управляемых ими электрических машин и оборудования или даже превышает ее.

Электрические и электронные аппараты предназначены для:

управления режимами работы электрических цепей;

защиты электрических цепей;

регулирования параметров электрических цепей.

В зависимости от назначения аппараты можно разделить на следующие группы.

1. Коммутационные аппараты, осуществляющие переключения в цепях. Это рубильники, пакетные выключатели, выключатели нагрузки, выключатели высокого напряжения, разъединители, отделители, короткозамыкатели, автоматические выключатели, предохранители. Характерным для этой группы является относительно редкое их включение и отключение.

2. Ограничивающие аппараты предназначены для ограничения токов короткого замыкания (реакторы) и перенапряжений (разрядники).

3. Пускорегулирующие аппараты предназначены для пуска, регулирования частоты вращения, напряжения и тока электрических машин или других потребителей электрической энергии. Это контроллеры, контакторы, пускатели, резисторы, реостаты. Для этой группы характерны частые включения и отключения.

4. Контролирующие аппараты осуществляют контроль электрических или не электрических параметров. К этой группе относятся реле и датчики. В реле, при плавном изменение входной (контролируемой) величины, входной сигнал изменяется скачком. Датчики преобразуют непрерывное изменение входной величины в непрерывное изменение какой либо электрической выходной величины.

5. Аппараты для измерений изолируют цепи первичной коммутации (главного тока) от цепей измерительных и защитных приборов. Они преобразуют измеряемую величину до стандартного значения, удобного для измерений. Это трансформаторы тока, трансформаторы напряжения, делители напряжения.

6. Регулирующие аппараты предназначены для регулирования заданного параметра по определенному, наперед заданному закону.

На электроподвижном составе (электровозах, трамваях, троллейбусах, вагонах метро) применяются аппараты специального исполнения, так называемые тяговые аппараты. В зависимости от основных функций тяговые аппараты относят к силовым, вспомогательным цепям и цепям управления.

В силовые и вспомогательные цепи преимущественно входят исполнительные аппараты систем управления. Это токоприемники и заземлительные устройства, соединяющие электрические цепи ЭПС с КС и через колесные пары с рельсами; коммутационные аппараты для группирования машин при пуске и торможении; резисторы и реакторы, применяемые для регулирования в этих режимах; аппараты прямой защиты, непосредственно воздействующие на защищаемую цепь (например, автоматические выключатели); аппараты косвенной защиты, работающие как датчики определенных величин.

Аппараты цепей управления имеют преимущественно распорядительно- информативное назначение в системе управления ЭПС. Это контроллеры, непосредственно управляющие движением ЭПС; кнопочные выключатели, управляющие отдельными аппаратами; автоматические регуляторы электрических и неэлектрических величин; блокировки различных видов, обеспечивающие правильную последовательность срабатывания аппаратов.

В зависимости от напряжения различают низковольтные аппараты-до 1000 В (660 В включительно) и высоковольтные аппараты свыше 1000 В.

В электрических контактных аппаратах переключение цепей осуществляется электромеханическими элементами путем перемещения подвижных частей аппарата. Эти элементы просты в изготовлении и обслуживании, но обладают рядом недостатков:

механической и магнитной инерционностью;

нестабильностью характеристик вследствие изнашиваемости частей;

незащищенностью от воздействия большего числа внешних и внутренних возмущений;

относительно низкими надежностью и особенно ремонтопригодностью.

Однако только такие элементы обеспечивают гальваническую развязку цепей, отвечают требованиям электробезопасности в отношении обесточивания цепей и снятия напряжения.

В электрических и электронных бесконтактных аппаратах, включение, отключение и переключение тока в электрической цепи осуществляется не механическим замыканием (размыканием) контактов, а скачкообразным изменением внутреннего сопротивления управляемого элемента, включенного в цепь последовательно с нагрузкой. В качестве такого элемента применяют магнитные усилители (МУ) с обратной связью, работающие в релейном режиме и полупроводниковые приборы, меняющие своё сопротивление в зависимости от силы тока управления.

В электронных аппаратах процессы включения, отключения и регулирования параметров осуществляются с помощью бесконтактных силовых полупроводниковых элементов (тиристоров, транзисторов, диодов). Полупроводниковые элементы обладают минимальной инерционностью. Их характеристики стабильны в течение продолжительного времени, элементы обеспечивают высокую надежность работы аппаратов, хотя в этом случае не происходит абсолютного разъединения отключаемых цепей.

Электронные аппараты являются перспективными, особенно в системах, которые в условиях эксплуатации требуют повышенной надежности, высокого быстродействия, большого срока службы, когда аппараты находятся под воздействием вибраций или в атмосфере ядовитых газов. Область применения электронных аппаратов ограничивается, в первую очередь, ростом перегрузок по току и увеличением перенапряжений в коммутируемой цепи, большими потерями энергии во включенном состоянии, влиянием температуры и радиации. Совмещение положительных качеств аппаратов с электромеханическими и полупроводниковыми элементами привело к созданию аппаратов принципиально нового типа – комбинированных (гибридных) с высокими технико-экономическими показателями. У них высокая износостойкость, большая перегрузочная способность, относительно малые габариты, малые потери во включенном состоянии, повышенная надежность и долговечность.

Благодаря достижениям микроэлектроники создается возможность использования современной элементной базы, например, микропроцессоров, в системах управления электронными аппаратами.


Электродинамические силы в электрических аппаратах


Известно, что на элемент dl1 проводника длиной l1 с током i1, расположенного в однородном магнитном поле с индукцией , действует механическая сила (сила Ампера).


, (1)


где - угол между направлением тока и вектором индукции.

Эту механическую силу называют электродинамической. Электродинамические силы возникают не только в контуре с током, расположенным во внешнем магнитном поле, но и в случае, когда этот контур уединен, и поле, его окружающее, определяется током в самом контуре.

При прохождении тока к. з., превышающего номинальный в 10–20 раз, на токоведущей контур электрического аппарата воздействуют значительные электродинамические силы, стремящиеся деформировать этот контур. При прохождении тока по соседним токоведущим контурам также возникают силы, которыми контуры взаимодействуют между собой. В сильноточных электрических аппаратах электродинамические силы могут достигать десятков тысяч ньютон. Способность электрического аппарата противостоять механическим нагрузкам, возникающих в токоведущих частях и поддерживающих их элементах в режиме к. з., называется электродинамической стойкостью.

Электродинамические силы зависят от наибольшего значения тока, от длины, конфигурации и взаимного расположения деталей, образующих токоведущий контур, а также от магнитных свойств окружающей среды. Токоведущие части могут располагаться как в среде с постоянной магнитной проницаемостью, не зависящей от напряженности магнитного поля (воздух, жидкие твердые изоляционные материалы), так и в среде, магнитная проницаемость которой зависит от напряженности магнитного поля.

Электродинамические силы определяются или с помощью закона Ампера (формула 3), или по изменению запаса магнитной энергии токоведущего контура. Первый метод рекомендуется применять тогда, когда можно аналитически найти индукцию в любой точке проводника, для которого необходимо определить силу. Индукцию определяют, используя закон Био-Савара-Лапласа, согласно которого элементарная индукция dB от элемента dl2 проводника l2 с током i2 в произвольной точке М, в нашем случае принадлежащей элементу dl1 проводника l1, равна (рис. 1):


, (2)


где -магнитная проницаемость вакуума равная 4 10-7 Гн/м; -угол между током i2 и лучом r.

Индукция в точке М, создаваемая током, проходящим по всему проводнику l2:


(3)


Силу, действующую на весь проводник l1, определим, подставив (3) в (1)


, (4)


где kk – коэффициент контура, величина интеграла, зависящая только от геометрических размеров проводников и их взаимного расположения.

Полученные формулы справедливы, когда можно считать, что токи протекают по осям проводников, а форма и размеры сечений проводников не влияют на электродинамические силы.

По формуле (4) определяется суммарная величина электродинамической силы взаимодействия данных проводников или контуров с токами, т.е. равнодействующая электродинамические сил. Точки приложения этой силы зависят от характера распределения электродинамические сил по длине проводников, обусловленного их конфигурацией и взаимным расположением.


Случайные файлы

Файл
25891-1.rtf
132221.rtf
92578.rtf
151793.rtf
174489.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.