Термодинамика теплофизических свойств воды и водяного пара (151010)

Посмотреть архив целиком

Условие и содержание задания


Идеальный газ (μ – 18,0 г/моль, к = 1,33) при V1; P1; T1 изохорно нагревается до T2, а затем изотермически до Р3. После изобарного и изоэнтропного сжатия рабочее тело возвращается в начальное состояние.

  1. Определить термические и удельные калорические характеристики рабочего тела в переходных точках цикла (P; V; T; h; s; u).

  2. Вычислить изменения калорических характеристик в каждом из составляющих циклов изопараметрических процессов (ΔH; ΔS; ΔU).

  3. Вычислить количество теплоты, деформационной работы, работы перемещения для каждого из изопараметрических процессов (Q; L; Lп).

  4. Выяснить энергетические особенности этих процессов и цикла в целом, составить для них схемы энергобаланса и кратко прокомментировать их особенности

  5. Оценить эффективность тепломеханического цикла и эквивалентного ему цикла Карно.


Таблица 1

варианта

Начальный объем рабочего тела,

V1, м3

Начальное давление,

P1, кПа

Начальная температура,

T1, К

Конечная температура в изохорном процессе,

T2, К

Конечное давление в изотермическом процессе,

P3, кПа

9

2,6

4000

573

723

100



1 Рабочее тело - идеальный газ


    1. Предварительные вычисления


Удельная газовая постоянна



Удельная изобарная теплоемкость газа при к = 1,33



Удельная изохорная теплоемкость



Масса идеального газа



    1. Определение характеристик термодинамического состояния идеального газа в переходных точках


На рис. 1 и 2 показан тепломеханический цикл в диаграммах Pv и Ts.

Расчет характеристик термодинамического состояния выполняется в соответствии с исходными данными табл.1 по следующему плану:

Состояние (точка) 1.

Известны: V1; P1; T1.

Определяется удельный объем



Удельные калорические характеристики для каждого из состояний вычисляются по расчетным соотношениям при Тб = 273,15 К и Рб = 100 кПа.

Удельная энтальпия



Удельная внутренняя энергия



Удельная энтропия



Состояние (точка) 2.

Известны: T2;

V2 = V1 (процесс 1-2 изохорный);

v2 = v1

Определяются:

Давление


Удельная энтропия


Удельная внутренняя энергия



Удельная энтропия



Состояние (точка) 3.

Известны: Р3;

Т3 = Т2 (процесс 2-3 изотермический).

Определяются:

Удельный объем



Объем


Удельная энтальпия


Удельная внутренняя энергия



Удельная энтропия



Состояние (точка) 4.

Известны: Р43 (процесс 3-4 изобарный);

s4 = s1 (процесс 4-1 изоэнтропный).

Определяются:

Термодинамическая температура



Удельный объем



Объем




Удельная энтальпия



Удельная внутренняя энергия


Результаты расчета сведены в табл.2


Таблица 2

Номер точки

Р,

кПа

Т,

К

t°,

°С

V,

м3

v,


h,


u,


s,


1

4000

573

300

2,6

0,066

560

295

-0,325

2

5061

723

450

2,6

0,066

837

502

-0,0002

3

100

723

450

131,2

3,34

837

502

1,812

4

100

230

-43

41,73

1,062

-80

-186

-0,325


Характеристики термодинамического состояния идеального газа в переходных точках цикла


    1. Вычисление изменения калорических характеристик в процессах с идеальным газом


Изменение калорических характеристик при переходе рабочего тела из начального состояния Н в конечное К определяется на основе следующих соотношений:

Изменение энтальпии


Изменение внутренней энергии



Изменение энтропии



По данным табл.2 получаем

Процесс 1-2 (V = const)

Процесс 2-3 (Т = const)

Процесс 3-4 (Р = const)

Процесс 4-1 (S = const)


1.4 Определение количества теплоты, деформационной работы и работы перемещения в процессах с идеальным газом


Характеристики термодинамических процессов (Q; L; Lп) определяются на основании Первого и Второго законов термодинамики. Деформационную работу и работу перемещения при равновесном изменении состояния от начального (Н) до конечного (К) можно вычислить также путем интегрирования выражений.

По данным 1.3 получим

Процесс 1-2 (V = const)



Процесс 2-3 (Т = const)


;


Процесс 3-4 (Р = const)


;


Процесс 4-1 (S = const)


;


Результаты расчетов, выполненных в 1.3 и 1.4, сведены в табл.3

Таблица 3

Некруговые процессы

ΔН,

кДж

ΔU,

кДж

ΔS,

кДж

Q,

кДж

L,

кДж

Lп,

кДж

1-2

10960

8238

12,77

8238

0

-2722

2-3

0

0

71,17

51458

51458

51458

3-4

-36066

-27108

-83,94

-36066

-8958

0

4-1

25105

18869

0

0

-18869

-25105

цикл

0

0

0

23630

23630

23630


Характеристики термодинамических процессов и изменения калорических свойств идеального газа


    1. Оценка эффективности тепломеханического цикла с идеальным газом


Тепломеханический коэффициент цикла



Среднетермодинамическая температура идеального газа в процессе подвода теплоты



Среднетермодинамическая температура идеального газа в процессе отвода теплоты



Тепломеханический коэффициент эквивалентного цикла Карно



    1. Схемы энергобалансов процессов с идеальным газом


Схемы энергобаланса можно представить в виде графических совокупностей элементов, соответствующих следующим частным формам Первого закона технической термодинамики:


Здесь приведены схемы энергобаланса для каждого из четырех изопараметрических процессов и цикла в целом по второй форме:



Каждая схема термодинамически комментируется в соответствии с энергетическими особенностями процесса (табл.4).


Таблица 4

Процессы

Схемы энергобалансов

Пояснение к схеме

1-2



ΔH

Q



Lп

В данном т/д процессе 1-2 энтальпия идеального газа увеличивается за счет подвода теплоты и затрачивания работы перемещения

2-3



ΔH

Q


В данном изоэнтальпийном процессе 2-3 работа перемещения совершается за счет подвода теплоты к идеальному газу

3-4



ΔН

Q

Lп

В данном изобарном процессе 3-4 теплота идеального газа отводиться за счет уменьшения энтальпии

4-1



ΔН

Q



Lп

В данном адиабатном процессе 4-1 энтальпия идеального газа увеличивается за счет затрачивания работы перемещения

Цикл



ΣΔН

ΣQ



ΣLп

В данном т/д цикле суммарное количество теплоты равно суммарному количеству работы перемещения


Случайные файлы

Файл
143524.rtf
1539-1.rtf
169282.rtf
30719-1.rtf
118115.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.