Реакция опор конструкции (150819)

Посмотреть архив целиком

Дано:

(см);

(см);

(см);

(кН);

Найти: реакции опор конструкции.


Решение


Обозначим на следующем рисунке реакции опор нашей конструкции.


Fkx=0 (1)

Fky=0 (2)

Fkz=0 (3)

mx(Fk)=0 (4)

my(Fk)=0 (5)

mz(Fk)=0 (6)



(1) XA+XB+Qcos30 =0

(3) ZA+ZB-Qsin30-N =0

(4) ZB*2,5a-N*1,5a-Qsin30*1,5a=0

(5) – N*b*cos60+Q*c*sin30=0

(6) – XB*2,5a-Qcos30*1,5a=0

(6) – XB*2,5–2cos30*1,5=0

XB=-2cos30*1,5 / 2,5 =0 => XB = -1,039 kH

(1) XA+XB+Qcos30 =0

XA=1,039 -2cos30 =0 => Xa = -0,693 kH

(5) – N*b*cos60+Q*c*sin30 =0

N=2*30*sin30 / 60*cos60 =0 => N = 1 kH

  1. ZB*2,5a-N*1,5a-Qsin30*1,5a =0

ZB=(1*1,5a+2sin30*1,5a) / 2,5a =0 => ZB = 1,2 kH

(3) ZA+ZB-Qsin30-N =0

ZA=-1,2+2sin30+1 =0 => Za = 0,8 kH


Проверка:


mx1(Fk)=0


ZA*2,5a+N*a+Qsin30*a=0

-0,8*2,5+1+2*0,5=0

0=0 – верно


mz1(Fk)=0


XA*2,5a+Qcos30*a=0

-0,693*2,5+2*0,866=0

0=0 – верно.


Силы, kН

XA

ZA

XB

ZB

N

-0,693

-0,8

-1,039

1,2

1


Задание: найти реакции опор конструкции

Дано:

Q

G

a

b

c

R

r

3 kH

2 kH

60 см

20 см

40 см

20 см

5 см


Найти реакции опор А и В.


Для нахождения искомых величин, которых, как видно из конструкции, четыре: XA, XB, ZB, ZA – запишем систему из 5 уравнений, характеризующих условия равновесия механизма:









Уравнение проекций сил на ось Oy отсутствует за неимением первых.

В данной конструкции действующая сила натяжения нити может быть заменена на силу. В этой ситуации будет учитываться и груз, прикреплённый к нити

Спроектируем силы и перепишем систему:





Получилась система из 5 уравнений с пятью неизвестными, решая которую, получим:



XA Н

XB Н

ZA Н

ZB Н

P Н

330,45

44,55

-2191

2242

1299


Получилось, что реакция опоры ZA – отрицательна. Это означает, что на рисунке она должна быть направлена в другую сторону. Решение для модулей выглядит следующим образом:


XA Н

XB Н

ZA Н

ZB Н

P Н

330,45

44,55

2191

2242

1299


Ответ: XA=330,45 Н; XB=44,55 Н; ZB=2242 Н; ZA=2191 Н.


XA Н

XB Н

ZA Н

ZB Н

P Н

716,5

134

-1658

1435

750


1. Исключим время t из уравнений:


t=y/5 ________

x=7 (y/5) 2-3 или y=√25 (x+3)/7 – полупарабола вдоль оси ОХ


2. Определение скорости:

VX=x1=14t При t1=1/4 c Vx =14/4=3.5 (см/с)

Vy=y1=5=co nst

________ ______

V=√V2x+V2y =√3.52+52 = 6.1 (см/с)

3. Определение ускорений:

ax=x11=14 (см/с2)=const

ay=y11=0 (см/с2)

______

a=√a2x+a2y = √142+0 =14 (см/с2)

Тангенциальное ускорение:

aτ=(Vx*ax+Vy*ay)/V= (3.5*14+5*0)/6.1 = 8,03 (см/с2)

_________

an=√a2-a2τ=√142 – (8.03)2 = 11.5 (см/с2)

ρ=V2/an=(6.1) 2/11.5= 3.24 (см/с2)


xt1=5t2+5t/3–3=-2.56 (см)

yt1=3t2+t+3=7 (см)

Mt1(-2.56; 1.25) – положение точки при t=t1

M0(-3; 0) – положение в начальный момент времени







Дано: R2=40; r2=20; R3=35; r3=35

X=C2t2+C1t+C0

При t=0 x0=7 =6

t2=2 x2=103 см

X0=2C2t+C1

C0=7

C1=6

103=C2 *22+6*2+7

4C2=103–12–7=84

C2=21

X=21t2+6t+7


=V=42t+6

a==42

V=r22

R22=R33

3=V*R2/(r2*R3)=(42t+6)*40/20*35=2,4t+0,34

3=3=2,4

Vm=r3*3=35*(2,4t+0,34)=84t+11,9

atm=r3

=2,4t

atm=R3=35*2,4t=84t

anm=R323=35*(2,4t+0,34)2=35*(2,4 (t+0,14)2

a=


Случайные файлы

Файл
103375.rtf
115061.rtf
46909.rtf
26458.rtf
фил.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.