Расчет индуктивности (150737)

Посмотреть архив целиком









Контрольная работа

по курсу «Компоненты электронной техники»

Тема: «Расчет индуктивности».


Методы расчета индуктивностей


Индуктивностью (коэффициентом самоиндукции) называют коэффициент пропорциональности между током и возбуждаемым им потокосцеплением. Если речь идет об отношении потокосцепления одного из двух контуров в силе обусловливающего его тока в другом контуре, то говорят о взаимной индуктивности (коэффициенте взаимной индуктивности).

Поскольку индуктивность, как это следует из определения, зависит от распределения тока в проводниках, при ее расчете надо учитывать влияние частоты. Под низкой частотой понимается такая, при которой можно пренебречь неравномерностью распределения тока по сечениям проводов; длина электромагнитной волны при этом значительно больше линейных размеров сечения. Под весьма высокой частотой понимают частоту, длина волны которой значительно меньше размеров поперечного сечения провода; при этом ток можно считать сосредоточенным в поверхностном слое нулевой толщины. Высокие частоты занимают промежуточное положение.

С практической точки зрения целесообразно рассмотреть отдельно методы расчета индуктивности воздушных контуров, катушек с замкнутыми сердечниками и катушек с сердечниками, имеющими воздушный зазор.


Воздушные контуры


Под воздушными контурами подразумевают такую систему проводов, для которых магнитная проницаемость равна проницаемости окружающей среды. Расчет в общем случае сводится к следующему. Задаваясь токами в рассматриваемых контурах, разбивают каждый из токов на элементарные нити и на основе закона Био-Савара определяют индуктивность в выбранной точке поля. По ее значению находят поток, сцепляющийся с какой-нибудь нитью тока, затем вычисляют полный магнитный поток, сцепляющийся с рассматриваемым контуром и определяемый соответствующим током.

Если справедливо предположение, что ток распределен равномерно по сечению или по поверхности провода, применяют вариант метода, заключающийся в следующем. Поток, сцепляющийся с какой-нибудь нитью тока, выражают как сумму потоков взаимной индукции, создаваемых другими нитями, причем суммирование должно быть распространено на все нити данного контура при вычислении взаимной индуктивности. При этом получают выражения, содержащие в явном виде указания на необходимые математические операции.

Таким образом, имеем


;


;


,


где L и M – собственная и взаимная индуктивности; di – нити тока; dl – элементы длины нитей; Ө - угол между элементами; μ0 – магнитная постоянная.

Сложность расчетов приводит к тому, что выше приведенным методом определяют индуктивность либо проводов простой формы, либо участков, составляющих сложные контуры. В последнем случае индуктивность контура состоит из суммы индуктивностей всех участков и двойной суммы взаимной индуктивности между участками, т.е.


(ki),

где n – число участков.

Получение расчетных соотношений для индуктивности возможно на основе и иных соображений. По определению индуктивность


,


где I – ток; Ψ – обусловленное им потокосцепление; ω – число витков; G – некоторая величина, являющаяся функцией геометрических размеров системы и имеющая размерность магнитной проводимости.

Если частные потоки сцепляются со всеми витками, то для расчета индуктивности берется проводимость пространства, в котором рассматривается суммарный поток.

Расчет индуктивностей катушек выполняют по одному из двух методов суммирования или массивного витка. Метод суммирования, заключающийся в учете частичных собственных и взаимных индуктивностей отдельных витков, не имеет явных преимуществ и применяется довольно редко (главным образом для численных расчетов катушек сложной формы). Методом массивного витка сравнивают индуктивность рассматриваемой катушки с индуктивностью массивного витка, имеющего такую же форму и размеры, при этом предполагая, что коэффициент заполнения равен единице. Таким образом, находят расчетную индуктивность, к которой затем вычисляют поправки на изоляцию.

Катушки с замкнутыми магнитопроводами (сердечниками). Расчет индуктивности катушек в магнитопроводах замкнутой формы осуществляют по общим соотношениям для магнитных цепей. В конечном своем виде эти соотношения отличаются от результатов, полученных для воздушных катушек, наличием множителя, учитывающего свойства сердечника и равного его магнитной проницаемости.

Для получения практических формул принимают, как правило, что весь магнитный поток проходит через магнитопровод (без утечек и рассеивания), а средняя магнитная силовая линия пронизывает центры масс поперечных сечений магнитной цепи (т. е. совпадает со средней линией магнитопровода). Исключением являются особые случаи, например катушки на сердечниках тороидальной формы с неполной обмоткой.

Если для какой - либо цепи возможно интегральное определение формализованной магнитной проводимости (или сопротивления), для вычисления индуктивности можно использовать формулу


,


связывающую индуктивность с магнитным сопротивлением RM , в виде


,


где SM - площадь поперечного сечения магнитопровода; lM - длина средней магнитной силовой линии; μa - абсолютная магнитная проницаемость материала сердечника.


Катушки с сердечниками, имеющими воздушный зазор


Для магнитопроводов с большим воздушным зазором необходимо учитывать отклонение распределения поля в зазоре от идеализированного. При этом магнитные сопротивления для основного потока и потока рассеивания становятся соизмеримыми, и расчетные формулы существенно усложняются.

Поэтому для таких катушек применяют различные приближенные методы, основанные либо на аппроксимации картины поля простыми геометрическими фигурами, либо на выборе так называемых расчетных полюсов, либо на использовании картин плоскопараллельных полей.

На практике удобно применять метод эквивалентного зазора, позволяющий использовать все формулы для сердечников с малыми зазорами. При этом эквивалентным зазором называют такой, который имеет ту же проводимость, что и реальный, а геометрия его определяется сечением полюсов магнитопровода и некоторой эквивалентной длиной. Эквивалентную длину находят из условия равенства проводимости на основе аппроксимации возможных путей потока.

Применительно к элементам радиоэлектронных цепей случай больших зазоров встречается сравнительно редко (исключение – катушки на стержневых сердечниках), и большая точность расчетов при этом не требуется. Индуктивность катушек на стержневых сердечниках определяют с помощью магнитной проницаемости тела (сердечника), выражаемой через коэффициент размагничивания. В этом случае коэффициент размагничивания равен проводимости (формально введенной) окружающего сердечник пространства при условии, что весь поток проходит через торцы сердечника.

Если известен для данного сердечника коэффициент размагничивания, то индуктивность катушки легко найти путем рассмотрения магнитной цепи, состоящей из двух участков с известными магнитными сопротивлениями.

В тех случаях, когда для расчетов используют коэффициент размагничивания, в формулы вместо μr подставляют μ0 (относительную магнитную проницаемость сердечника)


,


где N – коэффициент размагничивания.

Основная сложность заключается в определении коэффициентов размагничивания, зависящих в общем случае от геометрических размеров сердечника, магнитных свойств материала сердечника и характера распределения намагничивающего поля катушки.


Индуктивность воздушных катушек и тел специальной формы


Рассмотрим формулы для расчета индуктивности элементов, для которых магнитная проницаемость равна проницаемости окружающего пространства. Под общим названием «тела специальной формы» объединены элементы, не являющиеся катушками в собственном смысле, но входящие в состав цепей РЭА (провода, электроды, кабели и т. д.). Предполагается, что проводники выполнены из немагнитного материала.

Все линейные размеры приведены в сантиметрах, индуктивность в микрогенри.

Однослойная воздушная катушка со сплошной намоткой.


при < ,


где d – диаметр катушки; l – длина катушки; ω – число витков катушки;


при > 5.


Многослойная воздушная катушка:


;


где dср – средний диаметр катушки; h – высота катушки; t – радиальная ширина намотки; ∆ L – поправка на заполнение:


,


где dиз – диаметр провода в изоляции; dм – диаметр провода по меди.


Катушка со спиральной намоткой ленточным проводом.

Расчет индуктивности практически совпадает с расчетом L для многослойной катушки с теми же наружным и внутренним диаметрами, высотой и коэффициентом заполнения. Вместо числа витков в формулу подставляют число слоев ленточной катушки.

Соленоид на каркасе прямоугольного сечения:


при ;


a, b – стороны поперечного сечения каркаса, a < b; l – длина катушки; k1 - на рис 1;


при ;


где ; .

Значение поправок α1 и α2 приведены в таблице 1.


Табл. 1. Значения поправок α1 и α2.

a/b

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

α1

0,112

0,183

0,238

0,285

0,325

0,361

0,393

0,422

0,449

0,473

α2

0,016

0,032

0,048

0,064

0,080

0,096

0,111

0,127

0,143

0,159


Случайные файлы

Файл
133236.rtf
14309.rtf
17801-1.rtf
125335.rtf
144919.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.