Передача электронной информации (150552)

Посмотреть архив целиком












Передача электронной информации


Мы не задумываемся о том, как наш мобильный телефон передаёт и принимает электронную информацию. Под электронной информацией мы понимаем наш голос, письменный текст или фотографию. Каким же образом кодируется такая информация, и каким образом передаётся в пространство? Мы не будем описывать процесс кодирования информации, но отметим, что носителем этой информации вдоль проводов являются электроны (рис. 1). Провод, представленный в центре схем (рис. 1, а, b), выполняет функции передающей антенны.

Известно, что в каждом кубическом сантиметре медного провода содержится свободных электронов. Под действием электрического потенциала, приложенного к проводу, его свободные электроны принимают упорядоченную ориентацию и суммарное магнитное поле, формируемое ими, выходит за пределы провода (рис. 1, a, b).

Направление суммарного магнитного поля всех свободных электронов в проводе формирует вокруг него магнитное поле (рис. 1, а, b), направление которого меняется с изменением направления векторов магнитных моментов и спинов электронов. Это твёрдо установленные экспериментальные факты.

Когда свободные электроны в проводе сориентированы вдоль его оси и их спины направлены вверх (рис. 1, а), то вокруг провода формируется магнитное поле, направление силовых линий которого закручено против хода часовой стрелки. Когда же электроны поворачиваются на и их спины оказываются повёрнутыми перпендикулярно оси провода, то магнитное поле вокруг него исчезает. Оно вновь появляется, когда электроны, повернувшись на от исходного положения, вновь ориентируют свои спины и векторы магнитных моментов вдоль провода (рис. 1, b). Направление магнитных силовых линий магнитного поля вокруг провода тоже меняется на . Таким образом, электроны меняют свое направление вдоль провода на с частотой изменения электрического тока. В обычной электрической сети эта частота равна 50Гц, а у мобильного телефона она изменяется в гигагерцовом диапазоне (более 1000 МГц).


Рис. 1. а) и b) – cхемы изменения ориентации свободных электронов в проводе под действием электрического импульса; с) – электромагнитная волна Максвелла


Возникает вопрос: будет ли магнитное поле, формируемое электронами вокруг провода, излучаться в пространство при смене знака ориентации электронов в нём? Удивительным является то, что физики ХХ века до сих пор не имеют ответа на этот вопрос. Попытаемся найти его.

Можно, конечно, допустить, что при смене направления магнитного поля вокруг провода (рис. 1, а, b) оно излучается в пространство и распространяется в нём со скоростью света. Проверим работоспособность такой гипотезы. Если провод передающей антенны имеет радиус 0,01 м и на его поверхности генерируется магнитное поле напряженностью 0,001 Тл, то линейная удельная напряженность магнитного поля на поверхности провода составит


. (1)


При удалении магнитного кольца (магнитного кольцевого импульса) от поверхности антенны со скоростью света его радиус будет увеличиваться. Представим, что такое расширяющееся кольцевое магнитное поле удалилось от передающей антенны на миллион километров и встретилось с антенной приемника. Линейная плотность магнитного кольца, которое пересечет антенну приёмника, составит . Вряд ли такое слабое поле может возбудить электроны антенны приемника, чтобы передать им закодированную информацию.

Но ведь астрофизики принимают сигналы от звёзд, которые, как они полагают, расположены от нас на расстоянии световых лет. Если эту информацию несут магнитные кольца с увеличивающимися радиусами, то напряженность их магнитных полей, приходящих к нам, будет близка к нулевым значениям. Это даёт нам основание утверждать, что магнитное поле, формируемое электронами вокруг передающей антенны, никуда не излучается.

В XIX и ХХ веках считалось, что электромагнитное излучение является волновым. Оно формируется электрическими и магнитными полями, которые изменяются синусоидально во взаимно перпендикулярных плоскостях. Такое представление базируется на опытах Майкла Фарадея, проведённых им в 1831 году. Он установил, что магнитные и электрические поля меняются синхронно и всегда находятся в сопряжённом состоянии. Если эти изменения синусоидальны, то изменение напряженностей электрических и магнитных полей чаще всего представляют как две взаимно перпендикулярные синусоиды, изменяющиеся во времени и описываемые уравнениями Максвелла:


(1)

, (2)

, (3)

. (4)


Здесь:

- напряженность электрического поля;

- напряженность магнитного поля;

- ток смещения;

- ток проводимости.

Как видно (1-4), это - уравнения в частных производных, поэтому они автоматически противоречат аксиоме Единства. Это противоречие усиливается независимостью и . В результате они не могут описывать корректно движение в пространстве каких-либо объектов. Поэтому у нас есть основание поставить под сомнение, соответствие реальности электромагнитной волны Максвелла.

Это сомнение базируется на массе противоречий между экспериментальными фактами и уравнениями Максвелла. Например, кольцевые магнитные поля вокруг провода (рис. 1, а, b) – строгий экспериментальный факт, а волна с одновременно и синусоидально меняющимися напряжённостями электрических и магнитных полей - выдумка теоретиков. Приняв её, они обязаны сообщить нам: каким образом цилиндрическое магнитное поле (рис. 1, а, b), формируемое электронами вокруг любого провода, по которому течёт ток, превращается в две взаимно перпендикулярные синусоиды? Как из кругового магнитного поля формируются амплитуды взаимно-перпендикулярных синусоид и чему они равны? Но такие вопросы не смущают физиков-теоретиков. Не моргнув глазом, они голословно утверждают, что не нужны никакие представления, математика прекрасно обходится без каких – либо представлений в предсказании экспериментального результата.

В условиях, когда нет ни единого эксперимента, способного доказать формирование электромагнитных волн Максвелла, правильность интерпретации результатов решений его уравнений вызывает сомнения. Но физики ХХ полностью игнорировали это и делали всё, чтобы доказать, что уравнения Максвелла (1-4) описывают излучение антенной передатчика именно такой волны. Возникает вопрос: на чём базируют физики свою убеждённость в том, что излучение формируют электромагнитные волны Максвелла? Прежде всего на опытах Герца, который якобы доказал существование таинственного тока смещения (), входящего в третье уравнение (3) Максвелла. Ошибочность этого доказательства трудно было проверить при отсутствии сведений об участии фотонов в передаче информации в пространстве. Теперь такая информация имеется и мы можем проверить корректность интерпретации результатов опытов Герца, проведённых им в конце 19-го века. С тех пор не нашлось учёного, способного понять необходимость проверки достоверности интерпретации результатов этих опытов. Выполним её.

Герц использовал в качестве источника высокого переменного напряжения катушку Румкорфа, с помощью которой генерировал искры в искровом промежутке 1 вибратора (рис. 2). Для регистрации процесса излучения он использовал провод, концы которого завершались сферическими шариками. Он придавал этому проводу форму окружности, квадрата или прямоугольника с регулируемым зазором между шариками (рис. 2). Такое устройство он назвал резонатором.

Искровой промежуток 3 резонатора регулировался специальным микрометрическим винтом. Появление искры между шариками свидетельствовало о появлении тока в проводе резонатора. В некоторых опытах искра была такой слабой, что он наблюдал её в темноте при использовании увеличительного стекла или подзорной трубы.

Рис. 2. Схема опыта Герца: 1 – искровой промежуток вибратора; 2 – пластины; 3 – искровой промежуток резонатора; 4 – проводящее или изолирующее тело


Когда искровой промежуток 3 резонатора располагался сбоку, как показано на рис. 2, то искр в нём не было в силу одинаковости условий для нижней и верхней половинок резонатора. Если к пластинам вибратора подносилось какое – либо проводящее тело 4, то, как считал Герц, оно деформировало поле вибратора, в результате резонатор оказывался не в нейтральном положении, и в его зазоре 3 появлялись искры. При этом искровой промежуток 3 резонатора надо было располагать с той стороны, с которой подносилось проводящее тело.

Герц обнаружил, что замена проводящего тела изолированным не меняет результат опыта. На основании этого он сделал вывод о том, что электромагнитное поле Максвелла генерирует ток смещения и в проводящих телах, и в диэлектриках.

Нам странно воспринимать такой вывод Герца. Прежде всего, диэлектрик не проводит ток, поэтому его и назвали так, чтобы отличить от проводника, который проводит ток. Далее, остаются невыясненными вопросы о влиянии на результат эксперимента световых фотонов, излучаемых в зазоре 1 вибратора в момент образования искры. Ведь они отражаются от проводящих тел и диэлектриков одинаково. Попав на провод резонатора, они и формируют в нём электрический потенциал, который, разряжаясь, образует искру в искровом зазоре 3.

Когда зазор 3 резонатора симметричен относительно концов вибратора, то симметричный поток фотонов, поглощаемых электронами провода резонатора, формируют в нём однополярный потенциал и искра отсутствует. Введение проводящего или изолирующего тела 4 в зону лишь нижней части резонатора приводит к тому, что фотоны, излучённые в искровом промежутке 1 вибратора, отражаются от боковой стенки введённого проводящего или изолирующего тела 4 и увеличивают общий поток фотонов на нижнюю часть резонатора. В результате формируется дисбаланс в возбуждении электронов нижней и верхней частей резонатора и возникает потенциал, который и разряжается в зазоре 3 резонатора, формируя искру, которую и наблюдал Герц.


Случайные файлы

Файл
48199.rtf
audit1.doc
59868.rtf
158835.rtf
151778.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.