Грозы, удары молний, градобитие (150220)

Посмотреть архив целиком

Балтийская государственная академия рыбопромыслового флота

Кафедра защиты в чрезвычайных ситуациях













Контрольная работа

Дисциплина: "Опасные природные процессы"

Тема: "Грозы, удары молний, градобитие"












Калининград

2008

Введение


По оценкам экспертов ООН, за последние сто лет в разных странах мира произошло более 50 тысяч природных катастроф, ставших причиной гибели свыше 4 млн. человек. Из 234 наиболее масштабных природных катастроф 1950–1999 годов 38% были штормы, 29% – землетрясения, 27% – наводнения, а 6% составили все остальные виды природных опасностей. Землетрясения унесли жизни 47% погибших, штормы – 45%, наводнения – 7%, другие виды опасностей – 1%. Экономические потери имеют следующее соотношение: 35% – от землетрясений, 30% – от наводнений, 28% – от штормов и 7% – от других опасностей.

Территория России подвержена воздействию широкого спектра опасных природных процессов. Динамика социальных потерь от чрезвычайных ситуаций (ЧС), приведенная на графике 1 и в таблице, охватывает период с 1901-го по 2000 год.


График 1. Динамика роста социальных потерь от природных катастроф в России (1901–2000 гг.)






Таблица. Распределение ЧС природного характера и связанных с ними социальных потерь (Россия, 1901–2000 гг.)

Годы

Число ЧС

Общее число погибших

1901–1910

2

16 562

1911–1920

2

2 500 000

1921–1930

2

23

1931–1940

2

687

1941–1950

1

110 000

1951–1960

1


1961–1970

4

155

1971–1980

5

100

1981–1990

46

694

1991–2000

75

3 441



Актуальность предупреждения ОПП обуславливается:

  1. увеличением в последние годы ущерба от стихийных бедствий;

  2. возрастанием количества природных и природно-техногенных чрезвычайных ситуаций;

  3. низким уровнем оправдываемости прогнозов опасных и особо опасных природных явлений, производимых с помощью существующих методов прогнозирования;

  4. недостаточной изученностью физических процессов взаимовлияния геосфер.

Основными задачами прогнозирования являются:

  1. анализ основных опасностей природного характера для типовых объектов на территории России;

  2. оценка рисков возникновения опасных и особо опасных природных явлений для отдельных регионов;

  3. исследование количественных зависимостей, описывающих состояние и динамику атмосферных процессов, которые приводят к возникновению опасных и особо опасных природных явлений и чрезвычайным ситуациям;

  4. систематизация опасных и особо опасных явлений природы, приводящих к экологическим катастрофам;

  5. исследование экологических последствий опасных и особо опасных природных явлений;

  6. исследование видов экономического ущерба и их рисков;

  7. разработка методов прогнозирования рисков экологических катастроф, вызванных опасными и особо опасными природными явлениями;

  8. исследование эффективности использования прогнозов при управлении рисками;

  9. разработка физико-статистических моделей, алгоритмов, методик и программных продуктов для анализа и прогноза экологической обстановки при возникновении чрезвычайных ситуаций;

  10. сбор и обобщение информации о случаях, когда опасные явления природы явились источниками экологических происшествий и катастроф;

  11. разработка концептуальной модели опасного явления природы;

  12. сбор и анализ информации об опыте управления в кризисных экологических ситуациях, накопленном в мире и, в частности, в РФ.




1. Реферативная часть


1.1 Грозы


1.1.1 Определение

Гроза – атмосферное явление, при котором внутри облаков или между облаком и земной поверхностью возникают электрические разряды – молнии, сопровождаемые громом.


1.1.2 Распространенность

Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 46 молний в секунду. По поверхности планеты грозы распределяются неравномерно. Над океанами гроз наблюдается приблизительно в десять раз меньше, чем над континентами. В тропической и субтропической зоне (от 30° северной широты до 30° южной широты) сосредоточено около 78% всех молниевых разрядов. Максимум грозовой активности приходится на Центральную Африку. В полярных районах Арктики и Антарктики и над полюсами гроз практически не бывает. Интенсивность гроз следует за солнцем: максимум гроз приходится на лето и дневные послеполуденные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца. На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер.





Рисунок 1. Распространенность гроз по земному шару


1.1.3 Механизм развития

1.1.3.1 Стадии развития грозового облака



Рисунок 2. Стадии развития грозового облака


Необходимыми условиями для возникновения грозового облака является наличие условий для развития конвекции или иного механизма, создающего восходящие потоки, запаса влаги, достаточного для образования осадков, и наличия структуры, в которой часть облачных частиц находится в жидком состоянии, а часть в ледяном.

1.1.3.2 Классификация грозовых облаков

В настоящее время принято классифицировать грозы в соответствии с характеристиками самих гроз и эти характеристики в основном зависят от метеорологического окружения, в котором развивается гроза.


1.1.3.2.1 Одноячейковое облако




Рисунок 3. Стадии развития одноячейкового кучево-дождевого облака


Одноячейковые кучево-дождевые облака развиваются в дни со слабым ветром в малоградиентном барическом поле. Их называют еще внутримассовыми или локальными грозами. Они состоят из конвективной ячейки с восходящим потоком в центральной своей части. Они могут достигать грозовой и градовой интенсивности и быстро разрушаться с выпадением осадков. Размеры такого облака: поперечный 5–20 км, вертикальный – 8–12 км, продолжительность жизни около 30 минут, иногда до 1 часа. Серьезных изменений погоды после грозы не происходит.

1.1.3.2.2 Многоячейковые кластерные грозы




Рисунок 4. Схема многоячейковой грозовой структуры


Это наиболее распространенный тип гроз связанный с мезомасштабными (имеющими масштаб от 10 до 1000 км) возмущениями. Многоячейковый кластер состоит из группы грозовых ячеек, двигающихся как единое целое, хотя каждая ячейка в кластере находится на разных стадиях развития грозового облака. Грозовее ячейки имеют поперечные размеры 20–40 км, их вершины нередко поднимаются до тропопаузы и проникают в стратосферу. Многоячейковые кластерные грозы могут давать град, ливневые дожди и относительно слабые шквальные порывы ветра. Многоячейковый кластер может существовать в течение нескольких часов.

1.1.3.2.2 Многоячейковые линейные грозы (линии шквалов)

Многоячейковые линейные грозы представляют собой линию гроз с продолжительным, хорошо развитым фронтом порывов ветра на передней линии фронта. Линия шквалов может быть сплошной или содержать бреши. Приближающаяся многоячейковая линия выглядит как темная стена облаков, обычно покрывающая горизонт с западной стороны (в северном полушарии). Большое число близко расположенных восходящих / нисходящих потоков воздуха позволяет квалифицировать данный комплекс гроз как многоячеечный, хотя его грозовая структура резко отличается от многоячейковой кластерной грозы. Линии шквалов могут давать крупный град и интенсивные ливни. Данное явление характерно для Северной Америки, на территории Европы и Европейской территории России наблюдается реже.

1.1.3.2.3 Суперячейковые грозы




Рисунок 5. Вертикальная и горизонтальная структура суперячейкового облака


Суперячейковые облака относительно редки, но представляют наибольшую угрозу для здоровья и жизни человека и его имущества. Суперячейковое облако имеет одну зону восходящего потока и размер ячейки: диаметр порядка 50 км, высота 10–15 км (нередко верхняя граница проникает в стратосферу) с единой полукруглой наковальней. Скорость восходящего потока в суперячейковом облаке до 60 – 80 м/с. Вращающийся восходящий поток в суперячейковом облаке (в радарной терминологии называемым мезоциклоном) создает экстремальные по силе погодные явления, такие, как гигантский град (более 5 см в диаметре), шквальный ветер до 40 м/с и сильные разрушительные смерчи. Окружающие условия являются основным фактором в образовании суперячейкового облака. Необходима очень сильная конвективная неустойчивость воздуха. Температура воздуха у земли (до грозы) должна быть +27…+30 и выше, необходим ветер переменного направления, вызывающий вращение. Осадки, образующиеся в восходящем потоке, переносятся по верхнему уровню облака сильным потоком в зону нисходящего потока. Таким образом, зоны восходящего и нисходящего потоков оказываются разделенными в пространстве, что обеспечивает жизнь облака в течение длительного периода времени. Обычно на передней кромке суперячейкового облака наблюдается слабый дождь. Ливневые осадки выпадают вблизи зоны восходящего потока, а наиболее сильные осадки и крупный град выпадают к северо-востоку от зоны основного восходящего потока.

1.1.3.3 Физические характеристики грозовых облаков


Случайные файлы

Файл
60328.rtf
71060.rtf
49699.rtf
65481.rtf
97521.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.