По коаксиальному кабелю, радиусы внешнего и внутреннего проводника которого равны R0 и R соответственно, протекает ток I. Пространство между проводниками заполнено магнетиком, магнитная проницаемость которого меняется по закону =f(r).
       Построить графически распределения модулей векторов индукции B и напряжённости H магнитного поля, а также вектора намагниченности J в зависимости от r в интервале от R до R
0. Определить поверхностную плотность токов намагничивания i'п на внутренней и внешней поверхностях магнетика и распределение объёмной плотности токов намагничивания i'об(r). Определить индуктивность единицы длины кабеля.

Функция =f(r) имеет вид: =(R0n+rn)/(R0n+Rn).
Значения параметров R
0/R=2/1 и n=3



Вариант 12

По условию:

Вычислим магнитную индукцию по формуле:

Намагниченность материала проводника:

По теореме о циркуляции намагниченности:

, где - ток намагниченности.

Найдем дифференциал: Т.к.

Поверхностная плотность тока намагничивания:

Найдем плотность тока намагничивания на внутренней и внешней поверхностях проводника:

Для нахождения индуктивности единицы длины кабеля найдем поток вектора через продольное сечение кабеля единичной длины:

Индуктивность:

График зависимостей , где r изменяется от до






Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.