Министерство Образования Российской Федерации

Алтайский Государственный Университет им. И.И. Ползунова













Контрольная работа

по физикохимии композиционных материалов

на тему: Волокна











г. Барнаул

2009


Стеклянное волокно

Стеклянное волокно (стекловолокно), искусственное волокно, формуемое из расплавленного неорганического стекла. Различают непрерывное стеклянное волокно-комплексные стеклянные нити длиной 20 км (и более), диаметром мононитей 3-50 мкм, и штапельное стеклянное волокно длиной 1-50 см, диаметром волокон 0,1-20 мкм.

Получение

Непрерывное стеклянное волокно получают фильерным формованием пучка тонких мононитей из расплавленной стекломассы с последующей вытяжкой, замасливанием и намоткой комплексной нити на бобину при высоких (10-100 м/с) линейных скоростях. Штапельное стеклянное волокно формуют путем разрыва струи расплавленного стекла после выхода из фильеры воздухом, паром, горячими газами или другими методами. Его также получают разрубанием комплексных нитей.

Из непрерывного стеклянного волокна делают крученые комплексные нити, однонаправленные ленты, жгуты. Из крученой нити изготовляют ткани, сетки, ленты на ткацких станках. Штапельные стеклянные волокна и пряди нитей, срезанные с бобин (длина 0,3-0,6 м), используют для изготовления стекловаты, холстов, матов, плит.

Состав и свойства стеклянного волокна определяются составом и свойствами волокнообразующего стекла, из которого его изготовляют. В зависимости от состава различают несколько марок такого стекла (табл. 1).





Наиболее важные характеристики стеклянных волокон приведены в табл. 2.





Повышенная прочность стеклянного волокна (по сравнению с исходным стеклом) объясняют по-разному: "замораживанием" изотропной структуры высокотемпературного расплава стекла или наличием прочного поверхностного слоя (толщина ок. 0,01 мкм), который образуется в процессе формования вследствие большей деформации и вытяжки по сравнению с внутренними слоями.

При кратковременном нагружении стеклянное волокно ведет себя практически как упругое хрупкое тело, вплоть до разрыва подчиняясь закону Гука. При длительном действии нагрузки наблюдается возрастание деформации, упругое последействие, зависящее от состава стекла и влажности воздуха. С увеличением диаметра волокна возрастает сопротивление изгибу и кручению и уменьшается прочность при растяжении. Во влажном воздухе, в воде и в водных растворах ПАВ прочность стеклянного волокна снижается на 50-60%, но частично восстанавливается после сушки.

Дополнительная обработка поверхности стеклянного волокна замасливателями и шлихтой приводит к ее гидрофобизации, снижению поверхностной энергии и электризуемости, снижению коэффициента трения от 0,7 до 0,3, увеличению прочности при растяжении на 20-30%. Поверхностные свойства стеклянного волокна и капиллярная структура изделия определяют малую (0,2%) гигроскопичность для волокон и повышенную (0,3-4%) для тканей.

Применение

Стеклянные волокна служат конструкционными, электро-, звуко- и теплоизоляционными материалами. Их используют в производстве фильтровальных материалов, стеклопластиков, стеклянной бумаги и др.

Для защиты от действия рентгеновского и радиоактивного излучения используют т. наз. многосвинцовые и многоборные стеклянные волокна. Оптические (светопрозрачные) стеклянные волокна применяются в производстве световодов и стекловолокнистых кабелей.

Базальтовое волокно

Современные темпы усиления воздействия производства на природу и человека требуют активизации работ по созданию новых экологически чистых материалов для теплоизоляции и звукоизоляции. Наибольший интерес из таких материалов представляет базальтовое волокно, получаемое из природных минералов путем их расплава и последующего преобразования в волокно без использования химических добавок. Волокно, о котором идет речь только условно называется базальтовым. В действительности его производят из различных горных пород близких по химическому составу – базальта, базанитов, амфиболитов, габродиабазов или их смесей.

Общие сведения о базальтовом волокне

Известно два основных типа базальтового волокна – штапельное и непрерывное. Одним из наиболее важных параметров штапельного базальтового волокна является диаметр отдельных волокон. В зависимости от диаметра волокна делят на: микротонкие, диаметром менее 0,6 мкм; ультратонкие, 0,6 - 1,0 мкм; супертонкие, 1,0 - 3,0 мкм; тонкие, 9 - 15 мкм; утолщенные, 15 - 25 мкм и грубые - диаметром 50 - 500 мкм. Диаметр волокон существенно влияет на важнейшие свойства изделий из него: теплопроводность, звукопоглощение, плотность и др. В зависимости от диаметра волокно используется для различных целей:

  • микротонкое – для фильтров очень тонкой очистки газовоздушной среды и жидкостей; изготовления тонкой бумаги и специальных изделий;

  • ультратонкое – для изготовления сверхлегких теплоизоляционных и звукопоглощающих изделий, бумаги, фильтров тонкой очистки газовоздушных и жидкостных сред;

  • супертонкое для изготовления прошивных теплозвукоизоляционных и звукопоглощающих изделий, картона, многослойного нетканого материала, теплоизоляционного вязально-прошивного материала, длинномерных теплоизоляционных полос и жгутов, мягких теплоизоляционных гидрофобизированных плит, фильтров и др.

  • тонкие и утолщенные волокна из горных пород представляют собой слой беспорядочно расположенных волокон диаметром 9–25 мкм и длиной 5–30 мм. Получают их, в основном, методом вертикального раздува струи расплава воздухом и вырабатывают в виде холстов, прошивных матов;

  • грубые волокна представляют собой относительно сыпучую дисперсно-волокнистую массу с длиной волокон 3–15 мм, диаметром 30–500 мкм, прочностью на разрыв 200–350 МПа, удельной поверхностью 28–280 см2/г. Волокна являются коррозионно-стойкими и могут быть использованы взамен металла для армирования материалов на основе вяжущих.

Применение в промышленности

Немецкое инженерное бюро EDAG разработало концепт автомобиля, при производстве которого использовано базальтовое волокно. Как сообщается "материал отличает легкость, прочность и экологичность, к тому же в производстве он обойдется дешевле алюминия или углепластика".

Средний диаметр волокна

не более 3,0 мкм

Массовая доля неволокнистых включений "корольков" размером свыше 0,25%

не более 4,8



Плотность

не более 30,0 кг/м3

Толщина

50,0 мм



Ширина

1000 мм

Коэффициент теплопроводности, Вт/м х К, не более


при (25°+5°) С

0,036

при (125°+5°) С

0,058

при (300°+5°) С

0,095

Температурный интервал применения

от -200°С до 700°С

Температура спекания волокна

1050 С.

Влажность не более

1,0%

Выщелачиваемость в пересчете на Na2O на 5000 см3

не более 5,0%

Массовая доля ионов хлора

не более 5,0%

Коэффициент звукопоглощения для частот

от 100 до 2000 Гц 0,85-0,95

Группа горючести

(не горючий по ГОСТ 30244 и СНиП 21-01-97)

Размер матов:

1000х3000 мм

Толщина

60, 80 мм.


Углеродное волокно

Углеродное волокно - материал, состоящий из тонких нитей диаметром от 5 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.


Получение




Рис. 1 - Структуры, образующиеся при окислении ПАН-волокна


УВ обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры, представленные на рис. 1. После окисления следует стадия карбонизации - нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения УВ могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.


Случайные файлы

Файл
123540.rtf
83094.rtf
33101.rtf
39141.rtf
132231.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.