Шпора - теория (shpor2)

Посмотреть архив целиком

36. Физическая природа света. Опыты по определению скорости света.

Свет представляет собой электромагнитные волны разных частот. Вся цветовая гамма, воспринимаемая человеческим глазом, есть смешение нескольких световых спектров. Ученые научились получать практически бесконечную цветовую гамму смешивая три цвета : RGB. Опыты : 1. Опыт Рёмера. (запаздывание прохождения света к земле при затмении спутника Юпитера), 2. Опыт Физо ( вращающийся диск с множеством отверстий, нанесенных по окружности одного радуса, сквозь к-рый человек наблюдает отраженный свет, прошедший путь : источник-колесо-зеркало-колесо-зеркало-глаз. Изменяя частоту вращения колеса наблюдалось появление/исчезновение света. 3. Опыт Фуко.


37. Геометрическая оптика. Принцип Ферма.

Законы геометрической оптики : 1. Свет распространяется прямолинейно. 2. Световые лучи не взаимодействуют. 3. Угол отражения равен углу падения. 4. Закон преломления : n=sin(A)/sin(B), где n-коэф. преломления, A-угол падения, B-угол отражения. Принцип Ферма : для оптики - свет распространяется так, чтобы время распространения было минимальным. Общий - все процессы проходят так, чтобы при этом затрачивался минимум энергии.


38. Интерференция световых волн. Условия усиления и ослабления света.

Интерференция - устойчивое перераспределение интенсивности света при наложении когерентных волн.


39. Интерференция Юнга. Зеркала и бипризма Френеля.

Юнг вырезал две дырки в светонепроницаемой пластине и наблюдал интерференцию от одного источника. (очень похоже на увеличенную дифракционную решетку). Бипризма состоит из двух одинаковых трехгранных призм, сложенных основаниями и изготовленных как одно целое. Преломляющие углы при верхней и нижних вершинах бипризмы очень малы. Свет от источника S преломляется в бипризме и распространяется за ней в виде двух систем волн, соответствующих когерентеым мнимым источникам света S1 и S2. Интерференция этих волн наблюдается в области их перекрытия на экране Э.

40. Интерференция от тонких пленок.


Примером интерференции света, набдюдающейся в естественных условиях, может служить радужная окраска тонких пленок(мыльных пузырей, пленок нефти или масла на поверхности воды). Образование частично когерентных волн, инерферирующих при наложении, происходит в этом случае вследсвие отражения падающего на пленку света в верхней и нижней ее поверхности. Результат интерференции зависит от сдвига фаз, приобретаемого накладывающимися волнами в пленке и зависящего от их оптической разности хода - разность оптических длин пути волн. Оптической длиной пути света называется произведение геометрической длины пути, пройденного светом в среде, на показатель преломления этой среды. Применяют, к примеру, в оптике, накладывая пленки на линзы, для уменьшения потерь интенсивности света.


41. Кольца Ньютона.

No comment...


42. Применение интерференции.

Интерференцию применяют, например, для получения картины внутренних напряжений детали. При этом из прозрачного материала изготавливают точную копию детали. При приложении к детали внешних сил можно в местах деформации наблюдать интерференционную картину. Нанесение на линзы пленок для уменьшения потерь при прохождении света через объектив - наз. просветление о
птики.


43. Принцип Гюйгенса-Френеля.

Принцип Гюйгенса - все точки поверхности, через котрорые проходит фронт волны в некоторый момент времени t, следует рассматривать как источники вторичных волн, а искомое положение фронта в момент времени t+dt совпадает с поверхностью, огибающей все вторичные волны. При этом считается, что в однородной среде вторичные волны излучаются только вперед, т.е. в направлениях, составляющих острые углы с внешней нормалью к фронту волны. Принцип Гюйгенса является чисто геометрическим. Он не указывает способа расчета амплитуды волны. Поэтому принцип Гюйгенса недостаточен для расчета закономерностей распространения световых волн. Приближенный метод решения этой задачи, являющийся развитием принципа Гюйгенса на Основе предложенной Френелем идеи о когерентности вторичных волн и их интерференции при наложении, называется принципом Гюйгенса-Френеля. Этот принцип можно выразить так : 1. при расчете световых колебаний источник можно заменить эквивалентной ему системой вторичных источников - малых участков dS любой замкнутой вспомагательной поверхности S, проведенной так, чтобы она охватывала источник. 2. Вторичные источники когерентны между собой и поэтому возбуждаемые ими волны интерферируют при наложении.


44. Прямолинейность распределения света согласно методу зон Френеля.

С помощью принципа Гюйгенса-Френеля можно обосновать с волновой точки зрения закон прямолинейного распространения света в однородной среде. Разобъем поверхность S на небольшие кольцевые участки - зоны Френеля. Колебания, возбуждаемые в точке М двумя соседними зонами противоположны по фазе, т.к. разность хода от сходственных точек этих зон до точки М равна половине длины волны. Следовательно, амлплитуда колебаний в точке М равна А=А1-А2+А3-А4+.., где Аi - амплитуда колебаний, возбуждаемых в точке М вторичными источниками, находящимися в пределах одной зоны. С увеличением i увеличивается и расстояние от зоны до точки М, и угол между нормалью к поверхности зоны и направлением в точку М. Поэтому, согласно принципу Гюйгенса-Френеля A1 > A2 > A3 .., а Ai = (Ai+1 + Ai-1)/2, следовательно амплитуда колебаний в точке М равна А = А1/2, т.е. результирующее действие всего открытого волнового фронта равно половине действия первой (центральной) зоны Френеля, радиус к-рой очень мал. Таким образом можно считать, что свет распространяется из S в M прямолинейно.


45. Дифракция от щели.

Дифракцией света называется совокупность явлений, которые обусловлены волновой природой света и наблюдаются при его распространении в среде с резко выраженной оптической неоднородностью ( вблизи границ непрозрачных тел, в отверстиях экранов). В более узком смысле под дифракцией понимается огибание светом встречных препятствий, сравнимых с длиной волны. Различают два случая дифракции света : дифракцию Френеля(дифракция в сходящихся лучах) и дифракцию Фраунгофера(дифракция в параллельных лучах) - дифракция на щели.


46. Дифракционная решетка.

Дифракционная решетка представляет собой систему из большого числа одинаковых по ширине и параллельных дркг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками. Сумма ширина одного прозрачного и непрозрачного промежутка называется постоянной или периодом дифракционной решетки.


47. Дисперсия света. Отличие дисперсионного и дифракционного спектров.

Дисперсией света называется зависимость фазовой скорости света в среде от его частоты. Эта зависимость легко обнаруживается, например при прохождении пучка белого цвета через призму. На экране, установленном за призмой, наблюдается радужная полоска, которая называется призматическим или дисперсионным спектром. Зависимость показателя преломления среды от частоты света нелинейная и немонотонная. Области значений, в которых с ростом частоты увеличивается также показатель преломления, соответсвуют нормальной дисперсии света (если наоборот - дисперсия аномальная).


48. Дифракция рентгеновских лучей.

Дифракцию рентгеновских лучей на кристаллах можно истолковать как результат интерференции рентгеновского излучения, зеркально отражающегося от систем параллельных плоскостей, которые проходят через узлы кристаллической решетки. Эти плоскости называются сетчатыми, или атомными, плоскостями кристалла(в кристалле дифракция объемная - т.е. трехмерная). Расстояние между двумя соседними сетчатыми плоскостями наз. межплоскостным расстоянием, а угол между падающим лучом и сетчатой плоскостью - углом скольжения.


49. Естественный и поляризованный свет. Закон Малюса.

Свет наз. естественным или неполяризованным, если направление колебания вектора Е не является преимущественным. Свет называется частично поляризованным, если в нем имеется преимущественные направление колебания вектора Е. Частично поляриз. свет можно рассматривать как совокупность одновременно распространяющихся в одном и том же направлении естественного и линейно поляризованного света. Поляризацией света назыв. выл=деление линейно поляризованного света из естественного или частично поляризованного. Для этой цели используют поляризаторы. Их действие основывается на поляризации света при его отражении и преломлении на границе раздела двух сред, а также на явлениях линейного лучепреломления и дихроизма. То же устройство можно использовать в качестве анализаторов, т.е. для определения характера и степени поляризации света. Закон Малюса : Ia = Ip*cos2(a), где Ia и Ip интенсивности линейно поляризованного света, пропущенного анализатором и падающего на него. Угол а - между главной плоскостью поляризатора и плоскостью в к-рой изменяется Е.


50. Закон Брюстера. Получение поляризованных лучей.

Закон Брюстера : отраженный свет полностью линейно поляризован при угле падения i=iБр, удовлетворяющего условию tg(iБр) = n, где n - относительный показатель преломления отражающей свет среды.


51. Эффект Керра. Оптически активные среды.

Оптически изотропное прозрачное тело становится анизотропным( т.е. показатель преломления зависит от направления волны), если его подвергуть механической деформации. Эффектом Керра называется возникновение оптической анизотропии у прозрачного изотропного твердого, жидкого или газообразного диэлектрика при помещении его во внешнее электрич. поле. Под действием однородного эл. поля диэлектрик поляризуется и приобретает отические св-ва одноосного кристалла, оптическая ось к-рого совпадает по направлению с вектором Е напряженности поля.


52. Применение поляризации.

Для телеуправления затемнения стекол в навороченых тачках и президентских дачах.



Случайные файлы

Файл
130360.rtf
9205-1.rtf
Записка.doc
58240.rtf
143216.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.