Гидравлический расчет трубопроводной сети. Подбор центробежного насоса (123008)

Посмотреть архив целиком

21
















Гидравлический расчет трубопроводной сети. Подбор центробежного насоса.

Вариант №5





Выполнил:


Проверил:






Краснодар 2008г.


Расчетно-графическая работа №1


Расчетная трасса водопроводной сети представлена на рисунке 1 приложения 1.

Расчетные расходы:


Q2=Q3=Q4

11

Q5=Q6=Q7

15,5

Q8=Q9=Q10=Q11=Q12

20,5

q3-4=q5-6

1

q8-9=q10-11

1,5

Длина участков


L1-2=L2-3

30,5

L3-4=L5-6

20,5

L I-

40

L II-

50

L6-7

50,5

L2-8=L10-11=L11-12

51

L8-9=L9-10

15,5

Длина всасывания Lвс=

8,05

Диаметр емкостей


Д2=Д3

10

Давление


Р1=Ратм

1

Р2

1,5

Р3

1

Высота столба


Н1

7

Н2

8

Геодезические отметки


Насоса

30

емкости 2

42

емкости3

35

Температура воды

20



1.Расчет водопроводной сети


1.1 Определение расчетных расходов воды


Расчетный расход для любого участка определяется по формуле:

Qpi = Qтi + 0‚5Qпi,

Путевой расход на участках 6-7, 2-3, 9-10, 10-11, определяется по формуле:


Qпi = qпi·L,


Данные расчётных расходов на участках водопроводной сети заносят в таблицу 1.1


Таблица 1.1 – Значения расчетных расходов, диаметров труб, скоростей, потерь напора на участках от диаметров труб по ГОСТу

Участка

Расход воды


Диаметр


скорость

Коэф. Скор

Удельное

сопротивление

Потери напора

М3/час

М3

м

Гост м

м/с


с26

м

11.-12

20,5

0,005694

0,085171

0,08

1,133448

1

454

0,851002

10.-11

41

0,011389

0,12045

0,1

1,450814

1

173

0,504606

9.-10

73,125

0,020313

0,16086

0,15

1,150035

1

30,7

0,225792

8.-9

116,875

0,032465

0,203364

0,2

1,033926

1

6,96

0,117562

8.-2

149

0,041389

0,229619

0,25

0,843595

1

2,19

0,031648

6.-7

15,5

0,004306

0,074059

0,08

0,856998

1

454

0,364238

6.-5

41,25

0,011458

0,120816

0,125

0,934183

1

76,4

0,009371

I

35,44974

0,009847

0,112001

0,125

0,802825

1

76,4

0,2379

II

31,55026

0,008764

0,105661

0,1

1,116428

1

173

0,014835

3.-4

88,25

0,024514

0,176714

0,175

1,019686

1

20,8

0,637271

2.-3

109,5

0,030417

0,196843

0,2

0,968684

1

6,96

0,190245

1.-2

269,5

0,074861

0,308811

0,3

1,059605

1

0,85

0,153948

0.-1

269,5

0,074861

0,398674

0,4

0,596028

1

0,186

0,005001



1.2 Определение диаметров трубопровода


Зная расчётные расходы по участкам водопроводной сети, определяем расчетные диаметры по формуле:


,


где dpi - расчетный диаметр труб на расчетном участке, м;

Qpi- расчетный расход воды на этом участке, м3/с;

V - скорость движения воды в трубопроводе, принимается V = 1м/с, для расчетного участка 0-1 скорость равна V= 0,7 м/с.

Значение расчетных диаметров dpi и диаметров по ГОСТу dгост для участков сети заносят в таблицу 1.1


1.3 Определение расчетных скоростей


После подбора диаметра по ГОСТу уточняют реальную скорость движения воды в трубопроводе по формуле:


,


Значение Vpi заносят в таблицу 1.1


1.4 Определение потерь напора на участках


Потери напора на участках нагнетательного трубопровода находят по формуле:

,

где - потери напора по длине на данном участке водопровода, м;

- коэффициент, учитывающий скорость движения воды на расчетном участке

коэффициент, учитывающий местные потери напора на расчетном участке (Км=1,05‑1,10)

удельное сопротивление на расчетном участке, определяемое в зависимости от dгост и материала стенок труб, .

Потери напора во всасывающем трубопроводе 0-1, определяется по формуле:

,= 0,005 м

Величины потерь напора на участках водопроводной сети заносим в таблицу 1.1


1.5 Определение потерь напора


Птери напора в нагнетательном


1,884558

Геометрический напор


20

Геометрическая высота = 7

6,845852


Абсолютное давление


2

Геометрический напор


26,84585

Стаический напор


36,84585

Напор насоса


38,88456


Потери напора на участке 12-2 определяются по формуле:

.= 1,73м


1.6 Подбор центробежного насоса


По номенклатуре центробежных насосов подбирается марка соответствующего насоса Д 320-50 с характеристиками =0,0748 м3/с и =38,88м.


1.7 Характеристика водопроводной сети. Выбор рабочей точки насоса


Коэффициент водопроводной сети примет вид:

= 363,7828

Задаваясь значениями расхода водопроводной сети Qi в пределах равных от (0.8 ÷ 1.4)·QH и подставляя в формулу (1.21) получим значения напора центробежного насоса Нi для каждого расхода воды. Полученные данные Нi и Qi занесем в таблицу 1.2.


Таблица 1.2 - Характеристика трубопроводной сети

Q1

0

0,059889

0,074861

0,089833

0,104806

H1

36,84585

38,15062

38,88456

39,78159

40,84172


На характеристику центробежного насоса Н = f(Q) (рисунок 1.1), нанесем в том же масштабе характеристику водопроводной сети Н1=f(Q1) полученную в результате расчета из (таблицы 1.2).

Точка пересечения характеристик насоса Н=f(Q) и водопроводной сети Н1=f (Q1) является рабочей точкой насоса. Она показывает, что данный центробежный насос, работая на водопроводную сеть, развивает напор НН, создает подачу QH, затрачивая определенную мощность NH, при КПД насоса - .

Рисунок 1.1 - Характеристика марки центробежного насоса

1–характеристика водопроводной сети; А– рабочая точка насоса.


1.8 Расчет электродвигателя


Расчетная мощность электродвигателя находится по формуле:


=5 Квт


Зная , частоту вращения насоса - n, условия работы насоса, характеристику окружающей среды подбирается электродвигатель для данного центробежного насоса.

Исходные данные для РГР №2

Расчетный расход нефтепродукта: Q1 = 80+0,1.N.n, м3/ч;

Длина нагнетательного трубопровода: LH = L1-2 = 200+0.1.N.n, м;

Длина всасывающего трубопровода: LВС = 5+0,01.N.n, м;

Давление в емкостях: P1 = Ратм ; Р2 = 2·Ратм;

Высота столба жидкости в емкости 2: Н2 = 8м;

Вязкость нефтепродукта: ν = 2. 10-4 м2/с;

Плотность нефтепродукта: ρ = 850 кг/м3;

Геометрические отметки: Насоса = 20м;

Емкости 2 = 35м.


Q1 = 80+0,1.N.n, м3/ч;

80,5

LH = L1-2 = 200+0.1.N.n, м;

200,5

LВС = 5+0,01.N.n, м;

5,05

P1 = Ратм ;

1

Р2 = 2·Ратм;

2



2. Трубопроводная сеть для перекачки вязкой жидкости


2.1 Гидравлический расчет трубопроводной сети


Расход жидкости определяется по формуле:

Qpi = Qтi, Данные расчетных расходов заносят в таблицу 2.1.

Таблица 2.1 – Значения расчетных расходов, диаметров труб, скоростей, потерь напора на участках от диаметров труб по ГОСТу


Участка

Расход воды

Диаметр

скорость

Коэф. Скор

Удельное

сопротивление

Потери напора


М3/час

М3

м

Гост м

м/с

с26

м

1.-2

80,5

0,022361111

0,168776455

0,2

0,712137297

0,9

6,96

0,560955411

0.-1

80,5

0,022361111

0,217889467

0,25

0,45576787

0,6

2,19

0,004378524


Потери напора на участках сети определяются по формуле Дарси-Вейсбаха:

где – коэффициент гидравлического трения по длине;

КМ- коэффициент, учитывающий местные потери напора

на расчетном участке (Км=1,05‑1,10)

Li – длина данного участка, м.

Коэффициент гидравлического трения находится исходя из зоны гидравлического сопротивления. Для этого необходимо определить число Рейнольдса (Re) и абсолютную эквивалентную шероховатость стенок трубопровода.

Число Рейнольдса определяется по формуле:

Коэффициент гидравлического сопротивления для этого случая определяется по формуле Шифринсона:

.


Для нагнетательного трубопровода


Число Рейнольдса

1294795,085

Коэффициент гидравлического трения

0,021647886

Для всасывающего трубопровода


Число Рейнольдса

113941,9674

Коэффициент гидравлического трения

0,020473307


Полученные результаты заносятся в таблицу 2.1.


2.2 Определение напора насоса


Потери во всасывающем трубопроводе

0,004379

1 вариант

Птери напора в нагнетательном


0,560955

Геометрический напор


18

Геометрическая высота = 7

6,995621


Абсолютное давление


3

Геометрический напор


24,99562

Стаический напор


44,99562

Напор насоса


45,56096

Коэффициент водопроводной сети


1130,624


2.3 Подбор центробежного насоса


По номенклатуре центробежных насосов по таблице приложения подбирается марка соответствующего насоса с характеристиками =0,022 м3/с и =45,56 м. Зная марку насоса К 90-55 выбираются графические характеристики центробежного насоса (рисунок 2.1). Используя значения и , выбираем из рисунка 2.1 значения H, N, , где верхние линии для не обточенного рабочего колеса, средние линии частично обточенного и нижние линии для обточенного рабочего колеса.


Рисунок 2.1 - Характеристика марки центробежного насоса


2.3 Пересчет характеристик центробежного насоса


Так как вязкость перекачиваемой жидкости , больше вязкости воды, необходимо пересчитать характеристики насоса с воды на вязкую жидкость по формулам:


,

,

,


где - коэффициенты пересчета характеристик насоса с воды на вязкие жидкости. Принимаются по рисунку 2.2 в зависимости от числа Рейнольдса, которое определяется по формуле:

,


где - подача насоса при максимальном КПД на воде

(принимаются из рисунка 2.1), = 0,025м3/с;

- эквивалентный диаметр, м;

- кинематическая вязкость жидкости, м2/с.


Рисунок 2.2 – Коэффициенты пересчета характеристик насоса с воды на вязкие жидкости


Эквивалентный диаметр определяется по формуле:



где – внешний диаметр рабочего колеса (Д2 = 200 ÷ 300 мм), м

ширина лопатки рабочего колеса на внешнем диаметре, принимается по паспортным данным насоса (=15÷20 мм), м;


- коэффициент стеснения, .


Число Re на вязкую жидкость

931,695

Дэ

0,134164


Пересчет характеристик ведется в табличной форме (таблица 2.2)

Потребная мощность определяется по соответствующим показателям работы насоса на вязкой жидкости таблица 2.2 по значениям расхода, напора и коэффициента полезного действия:



Результаты вычислений заносятся в таблицу 2.3


Расход при мах КПД

0,025

Напор при МАХ КПД

42

МАХ КПД

0,71

Коэффициент Kq

0,85

Коэффициент Kh

0,9

Коэффициент Kn

0,58


Таблица 2.2 – Показатели работы насоса на воде и вязкой жидкости

Подача насоса, м3

Напор насоса, м

КПД насоса

Q

KQ

Q

Hh

Kh

H

n

Kn

n

0,02

0,85

0,017

50,4

0,9

45,36

0,852

0,58

0,49416

0,025

0,85

0,02125

42

0,9

37,8

0,71

0,58

0,4118

0,03

0,85

0,0255

33,6

0,9

30,24

0,568

0,58

0,32944


Таблица 2.3 – Потребная мощность определяется по соответствующим показателям работы насоса на вязкой жидкости

Qi

0,017

0,02125

0,0255

Ni

1,560466

1,950583

2,340699

На характеристики насоса на воде наносятся пересчитанные характеристики этого насоса при работе на вязкой жидкости рисунок. 2.4.


Рисунок 2.4 – Характеристика трубопроводной сети и работы насоса на вязкой жидкости


    1. Построение характеристики трубопроводной сети


Характеристика трубопроводной сети определяется по формуле:


,


Из уравнения коэффициент трубопроводной сети примет вид:


.


Задаваясь значениями расхода вязкой жидкости Qi в пределах равных от (0.8 ÷ 1.4)·QH и подставляя в формулу получим значения напора центробежного насоса Нi для каждого расхода вязкой жидкости. Полученные данные Нi и Qi занесем в таблицу 2.4.

Таблица 2.4 - Характеристика трубопроводной сети на вязкую жидкость

Q1

0

0,017889

0,022361

0,026833

0,031306

H1

44,99562

45,35744

45,56096

45,8097

46,10368


На характеристику центробежного насоса Н = f(Q) (рисунок 2.4), нанесем в том же масштабе характеристику трубопроводной сети на вязкую жидкость Н1=f(Q1) полученную в результате расчета из (таблицы 2.4).

Точка пересечения характеристик насоса Н=f(Q) и трубопроводной сети на вязкую жидкость Н1=f (Q1) является рабочей точкой насоса. Она показывает, что данный центробежный насос, работая на трубопроводную сеть, развивает напор НН, создает подачу QH, затрачивая определенную мощность NH, при КПД насоса - .


    1. Расчет электродвигателя


Расчетная мощность электродвигателя находится по формуле:


=4,9Квт


Зная , частоту вращения насоса - n, условия работы насоса, характеристику окружающей среды подбирается электродвигатель для данного центробежного насоса.


Случайные файлы

Файл
Sb_Pb.doc
33503.rtf
66074.rtf
71292-1.rtf
CBRR4387.DOC