Складність деяких методів експоненціювання точки кривої (86370)

Посмотреть архив целиком

Складність деяких методів експоненціювання точки кривої


Найпоширенішою операцією у всіх криптографічних алгоритмах є - кратне додавання точки , позначуване як

Цю операцію звичайно називають скалярним множенням, або, звертаючись до термінології мультиплікативної групи, експоненціюванням точки кривої.

З метою підвищення продуктивності під час обчислення точки багатьма авторами запропоновано різні методи. Дамо стислий опис й оцінку складності найпоширеніших з них.

Підхід до розрахунку точки може відрізнятися залежно від того, чи є точка фіксованою (заздалегідь відомою) або довільною точкою. У першому випадку завжди можна користуватися передрозрахунками точок, наприклад, , які зберігаються в пам'яті. Двійкове подання числа дозволяє селектрувати ті з них, які в результаті підсумовування утворять точку . У другому, більш загальному випадку, всі обчислення доводиться проводити в реальному часі.

Нехай порядок і число подано у двійковій системі



Розглянемо спочатку основні алгоритми експоненціювання при невідомій заздалегідь точці

експоненціювання алгоритм скалярне множення


Алгоритм подвоєння-додавання


Це найприродніший і найпростіший метод, при якому обчислення здійснюються за формулою



Ці обчислення на основі методу розрахунку ліворуч-праворуч здійснюються за допомогою наступного алгоритму.

Алгоритм 1.

Вхід

Вихід

1.

2.

2.1

2.2

3. .

Реалізація методу вимагає операцій подвоєння точки й додавань , де - вага Хеммінга двійкового вектора (число одиниць цього вектора). Оскільки в середньому число одиниць випадкового вектора дорівнює , загальне число групових операцій оцінюється величиною


Алгоритм подвоєння-додавання-віднімання


Попередній алгоритм можна вдосконалити, якщо вести додаткову операцію-віднімання точки. Цей метод запропонований в 1990 році Ф. Морейном і Дж. Олівосом. Наприклад, число у двійковій системі має вага у , але його можна подати як з вагою Ця ідея знижує вагу Хеммінга і, відповідно, число групових операцій. Реалізувати алгоритм подвоєння - додавання віднімання можна переходом від двійкового подання числа до трійкового з коефіцієнтами Одне із властивостей подання - відсутність у ньому суміжних пар ненульових елементів, завдяки чому зростає питома вага нульових елементів . Для розрахунку використовується наступний алгоритм.

Алгоритм 2.

Вхід позитивне ціле число

Вихід

1.

2.

2.1

2.2

2.3

3.

Після розрахунку обчислюється точка методом ліворуч-праворуч за допомогою алгоритму 3.

Алгоритм 3.

Вхід

Вихід

1.

2.

2.1

2.2

2.3

3. .

-подання числа може виявитися на один біт більше двійкового. Водночас, для випадкового ймовірність ненульових елементів і знижується від до , тобто, у середньому, для - розрядного числа їхня кількість оцінюється величиною . Тоді загальне середнє число групових операцій додавання й подвоєння в алгоритмі 3 можна оцінити як суму


Метод вікон з алгоритмом подвоєння - додавання - віднімання


Якщо в криптосистемі є резерви пам'яті, їх можна задіяти для подальшого збільшення швидкості обчислень. Ідея в тому, що замість точки можна експоненціювати і надалі складати суміжні блоки або вікна шириною в - поданні точки

Для цього розраховується за допомогою алгоритму 2 трійкове число , що потім може розбиватися на блоки довжиною, не менше

Назвемо - вікном числа непарний коефіцієнт утримуючий хоча б один ненульовий елемент. Зазначимо, що . Наприклад, при маємо вісім різних значень



Цих вікон достатньо для формування числа довільної довжини . Зазначимо, що парні коефіцієнти в - поданні числа надлишкові, тому що вони утворяться подвоєнням непарних. На першому етапі передрозрахунків розраховуються й записуються на згадку вісім точок і

У загальному випадку в пам'яті зберігається точок. Число може бути визначене за допомогою модифікованого алгоритму 2. Модифікація полягає в тому, що на кроці 2.1 замість необхідно записати , де означає ціле число , певне в інтервалі . Далі обчислюється точка згідно з алгоритмом 4.

Алгоритм 4.

Вхід

Вихід

1.

2.

3.

3.1

3.2

4. .

Нехай, наприклад, при цьому й Використання трійкового вимагає, мабуть, двох додавань точок, тоді як у другому випадку за рахунок попереднього розрахунку точки достатньо одного додавання. Число подвоєнь однаково в обох випадках. Зрозуміло також, що виграш за рахунок вікна з'являється лише при порівняно більших довжинах числа

Перший крок алгоритму 4 у загальному випадку вимагає групових операцій із точками кривої. На третьому кроці складність обчислень оцінюється середнім числом групових операцій додавання й подвоєння. Збільшення ширини вікна веде до збільшення складності обчислень на першому кроці (і об'єму пам'яті) і зниження тимчасової складності на третьому кроці. Для значень розширення поля порядку 180-260 оптимальним виявляється вікно шириною , а при - вікно шириною


Метод Монтгомері


Розглянемо метод Монтгомері. Нехай з Позначимо Можна перевірити, що


(1)


Отже, знаючи - координати точок й , можна обчислити координати точок й , перейти до пари , або до пари .

Кожна така ітерація вимагає одного подвоєння й одного додавання з використанням формули (1).

Після останньої ітерації, - координата точки може бути відновлена з - координати точки й - координат точок і за формулою



Використовуючи проективні координати, можна позбутися від інвертування, і кожна ітерація вимагатиме шість множень. Усього ж трудомісткість алгоритму 5, що реалізує метод експоненціювання Монтгомері, дорівнює причому алгоритм не вимагає додаткової пам'яті на зберігання попередньо обчислених змінних, а час його роботи не залежить від значення

Алгоритм 5. Метод експоненціювання Монтгомері.

Вхід

Вихід


1.

2.

2.1

3.1

3.2

4.


Алгоритм 5 вимагає однієї інверсії, а не двох, тому що можна обчислити

, а потім отримати множенням на . Можна домогтися істотного збільшення продуктивності, якщо операцію подвоєння замінити операцією ділення точки на два. Виграш до 40% при цьому досягається у зв'язку з відсутністю операції інверсії елемента в полі. Крім того, групові операції послідовних ділень у НБ зводяться практично до однієї операції множення в полі.


Методи експоненціювання при фіксованій точці


Фіксованою точкою в криптосистемі завжди є генератор або базова точка криптосистеми порядку . Такі точки - це відкриті ключі користувачів. Якщо в системі є резерв пам'яті, його можна використати для зберігання заздалегідь розрахованих точок. Наприклад, якщо обчислити й записати в пам'яті точки , то для визначення скалярного добутку залишиться лише обчислити суми точок відповідно до двійкового подання . У середньому для цього буде потрібно лише операцій. Їхнє число можна зменшити до операцій додавання й віднімання, якщо скористатися трійковим поданням .

Другим досить витонченим підходом є підхід на основі вікон з фіксованою базою. Замість двійкового подання числа використовується -е із передобчислюванням точок . Дійсно, нехай -е подання числа має вигляд



Тоді


де


Ці обчислення здійснюються за допомогою наступного алгоритму.

Алгоритм 6.

Вхід ширина вікна , ,

Вихід

1. Передрозрахунки

2.

3.

3.1

3.2

4.

Середня обчислювальна складність алгоритму оцінюється кількістю додавань 


.


Метод вікон у цьому випадку більше продуктивний, ніж при невідомій точці, тому що передрозрахунки не входять в алгоритм експоненціювання. Якщо використати поряд з додаванням подвоєння точки, реалізувати алгоритм можна інакше. Два вікна точки шириною кожне можна подати у вигляді





Всі можливі точки й обчислюються на етапі передрозрахунків і записуються на згадку. Загальна кількість цих точок зростає експоненційно зі збільшенням ширини вікна . Двійкове подання точки розбивається далі на фрагментів шириною . У кожному такому фрагменті відбираються старші розряди й розряди зі зрушенням вправо на (тобто на половину фрагмента).

Їхні двійкові подання дають першу пару точок й , які складаються, після чого їхня сума подвоюється.

Далі реалізується алгоритм послідовних додавань і подвоєнь праворуч із двома вікнами, описаний нижче.

Алгоритм 7.

Вхід ширина вікна , ,,

Вихід

1. Передрозрахунки обчислити всі точки й

,

2. Подати число у вигляді конкатенації фрагментів шириною

Нехай означає й біт фрагмента

3.

4.

4.1

4.2

5.

Обчислювальна складність цього алгоритму оцінюється числом групових операцій



Обмінюючи час обчислень на пам'ять, можна й далі підвищувати продуктивність експоненціювання точки кривої. Наприклад, для кожного вікна шириною можна заздалегідь розрахувати точок, при цьому на згадку рийдеться записати точок. Операція подвоєння в цьому випадку не використовується, а складність оцінюється числом додавань. Цей алгоритм назвемо алгоритмом максимальної пам'яті. У табл.13.1 дані для порівняння величини пам'яті й тимчасової складності (числа групових операцій) алгоритму 6 й алгоритму максимальної пам'яті при . В обох випадках зі збільшенням ширини вікна збільшується пам'ять і знижується число групових операцій. Очевидно, що останній алгоритм за наявності більших резервів пам'яті дозволяє істотно прискорити операцію експоненціювання фіксованої точки


Таблиця 1  Об'єм пам'яті й тимчасова складність (число групових операцій) алгоритму 6 й алгоритму максимальної пам'яті при

Метод

W = 3

W = 4

W = 5

W = 6


M

S

M

S

M

S

M

S

Алгоритм 6

14

900

30

725

62

632

126

529

Алгоритм

максимальної пам'яті.

469

58

750

46

1280

38

2079

33

Размещено на Allbest.ru


Случайные файлы

Файл
38967.doc
ГОСТ 23345-84.doc
18023-1.rtf
23984-1.rtf
91173.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.