Пределы. Сравнение бесконечно малых величин (86350)

Посмотреть архив целиком












Контрольная работа

Дисциплина: Высшая математика

Тема: Пределы. Сравнение бесконечно малых величин


Содержание


1. Предел числовой последовательности

2. Предел функции

3. Второй замечательный предел

4. Сравнение бесконечно малых величин

Литература


1. Предел числовой последовательности


Решение многих математических и прикладных задач приводит к последовательности чисел, заданных определенным образом. Выясним некоторые их свойства.

Определение 1.1. Если каждому натуральному числу по какому-то закону поставлено в соответствие вещественное число , то множество чисел называется числовой последовательностью.

Исходя из определения 1, видно, что числовая последовательность всегда содержит бесконечное число элементов. Изучение различных числовых последовательностей показывает, что с ростом номера их члены ведут себя по-разному. Они могут неограниченно увеличиваться или уменьшаться, могут постоянно приближаться к какому-то числу или вообще не проявлять какой-либо закономерности.

Определение 1.2. Число называется пределом числовой последовательности , если для любого числа существует такой номер числовой последовательности , зависящий от , что для всех номеров числовой последовательности выполняется условие .

Последовательность, которая имеет предел, называется сходящейся. В этом случае пишут .

Очевидно, для выяснения вопроса о сходимости числовой последовательности необходимо иметь критерий, который был бы основан только на свойствах ее элементов.

Теорема 1.1. (теорема Коши о сходимости числовой последовательности). Для того, чтобы числовая последовательность была сходящейся, необходимо и достаточно, чтобы для любого числа существовал такой номер числовой последовательности , зависящий от , что для любых двух номеров числовой последовательности и , которые удовлетворяют условию и , было бы справедливо неравенство .

Доказательство. Необходимость. Дано, что числовая последовательность сходится, значит, в соответствии с определением 2, у нее существует предел . Выберем какое-то число . Тогда, по определению предела числовой последовательности, существует такой ее номер , что для всех номеров выполняется неравенство . Но так как произвольно, то будет выполняться и . Возьмем два каких-то номера последовательности и , тогда


.


Отсюда следует, что , то есть необходимость доказана.

Достаточность. Дано, что . Значит, существует такой номер , что для данного условия и . В частности, если , а , то или при условии, что . Это значит, что числовая последовательность для ограничена. Следовательно, по крайней мере, одна из ее подпоследовательностей должна сходиться. Пусть . Докажем, что сходится к также.

Возьмем произвольное . Тогда, согласно определению предела, существует такой номер , что для всех выполняется неравенство . С другой стороны, по условию дано, что у последовательности существует такой номер , что для всех и будет выполняться условие .

Выберем и зафиксируем некоторое . Тогда для всех получим:


.


Отсюда следует, что , что и требовалось доказать.

Определение 1.3. Числовая последовательность называется монотонно возрастающей, если выполняется неравенство , и монотонно убывающей, если .

Теорема 1.2. Любая монотонно возрастающая ограниченная сверху числовая последовательность имеет предел.

Аналогичная теорема есть и для монотонно убывающей числовой последовательности.


2. Предел функции


При исследовании графиков различных функций можно видеть, что при неограниченном стремлении аргумента функции к какой-то величине, то ли конечной, то ли бесконечной, сама функция также может принимать ряд значений, неограниченно приближающихся к некоторой величине. Следовательно, для функции также можно ввести понятие предела.

Определение 2.1. Число называется пределом функции в точке , если для любого существует такое число , что из условия следует, что .

Данное условие записывается в виде: . Отметим, что интервал длины , который содержит в себе точку , называется -окрестностью точки .

Аналогичным образом вводится понятие предела функции и при стремлении к . Так же как и в случае числовой последовательности, для функции существует теорема Коши, которая определяет существование у нее предела.

Теорема Коши о существовании предела. Для того чтобы функция , где , имела предел при , где , необходимо и достаточно, чтобы для любого существовало такое число , что из условия вытекало условие .

Доказательства теоремы приводить не будем. В качестве предела функции могут служить как конечные, так и бесконечные величины.

Геометрический смысл теоремы Коши заключается в следующем. Возьмем некоторое , для которого . Тогда, согласно теореме, . Представим данное неравенство следующим образом: . Иначе говоря, как только станет отличаться от меньше, чем на , сама функция окажется в полосе шириной , расположенной на линии .

Y


X


В приведенном определении предела и теореме Коши может стремиться к произвольным образом. Однако во многих случаях это стремление происходит с какой-то одной стороны. Для этого вводятся понятия односторонних пределов.

Определение 2.2. Если стремится к , оставаясь все время меньше его, и при этом стремится к , то это число называется пределом функции слева и обозначается .

Определение 2.3. Если стремится к , оставаясь все время больше его, и при этом стремится к , то это число называется пределом функции справа и обозначается .

Необходимо иметь в виду, что не всегда пределы слева и справа в точке равны между собой.


3. Второй замечательный предел


Рассмотрим числовую последовательность , где , С ростом основание степени уменьшается до единицы, а показатель растет до бесконечности, поэтому ничего конкретного о поведении сказать нельзя. Для вычисления воспользуемся выражением для бинома Ньютона:


. 001\* MERGEFORMAT (..)


В нашем случае


.


Из полученного выражения следует, что с увеличением величина растет. Действительно, перейдем от к . Это приведет к тому, что число слагаемых возрастет на одно. Кроме того, величина множителей, заключенных в скобки, тоже возрастет, так как . Но если увеличивается число слагаемых и сами слагаемые растут, то . Значит, числовая последовательность монотонно возрастает.

Докажем теперь, что данная последовательность ограничена сверху. Заменим все скобки вида единицей. Так как , то


.


Кроме того , ,..., . Значит,


.


В правой части неравенства после цифры 2 стоит убывающая геометрическая прогрессия. Как известно, сумма первых членов такой прогрессии равна: . В нашем случае . С ростом величина будет, очевидно, стремится к единице. Значит, , то есть, ограничено сверху.

Итак, мы получили, что . Но так как монотонно возрастающая последовательность ограниченная сверху, то она имеет предел:



Можно доказать, что данный предел справедлив не только для натуральных чисел, но и для любых значений :


.


Полученное выражение и называется вторым замечательным пределом.

Число используется для введения натуральных логарифмов. Такие логарифмы обозначаются , при этом .

Следствие 3.1.


.


В частности, если , то .

Следствие 3.2.


.


В частности, если , то .


4. Сравнение бесконечно малых величин


Как следует из определения бесконечно малых величин, все они стремятся к нулю, но скорость этого стремления может быть различна. Поэтому все бесконечно малые величины можно сравнивать между собой.

Пусть даны две бесконечно малые величины и при , то есть , .

Определение 4.1. Функции и называются бесконечно малыми величинами одного порядка малости, если .

Определение 4.4. Функция называется бесконечно малой величиной более высокого порядка малости, чем , если .

Определение 4.3. Функция называется бесконечно малой величиной более низкого порядка малости, чем , если .

Тот факт, что , например, имеет более высокий порядок малости, чем , можно обозначить следующим образом: .

Определение 4.4. Функция называется бесконечно малой величиной го порядка малости относительно , если .

Определение 4.5. Функции и называются несравнимыми бесконечно малыми величинами, если не существует и не равен .

Определение 4.6. Две бесконечно малые величины и называются эквивалентными, если .

Очевидно, что это частный случай бесконечно малых величин одного порядка малости. Эквивалентные величины обозначаются следующим образом: .

Понятие эквивалентности имеет практическое приложение. Если, то это значит, что при достаточном приближении к на основании теоремы 9.4.1 можно написать: . Иначе говоря, или .

Полученный результат позволяет следствия первого и второго замечательных пределов представить следующим образом:


;

;

;

;

;


Случайные файлы

Файл
6931.doc
100827.rtf
97390.rtf
96994.rtf
ref-19547.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.