Методика обработки экспериментальных данных (86305)

Посмотреть архив целиком

Задание на курсовую работу


  1. Построить вариационный ряд

  2. Рассчитать числовые характеристики статистического ряда:

а) Размах варьирования.

б) Среднее арифметическое значение.

в) Оценки дисперсии.

г) Оценки среднеквадратического отклонения.

д) Мода.

е) Медиана.

ж) Коэффициент вариации.

  1. Построить полигон и гистограмму относительных частот.

  2. Построить эмпирическую функцию распределения.

  1. Построить статистическую проверку гипотезы по нормальному распределению с помощью критерии Пирсона или Колмогорова.

  2. Вычислить асимметрию и эксцесс.

  3. Построить доверительные интервалы, для математического ожидания и среднеквадратического отклонения для надежности 95%.

  4. Выводы.


Данные по выборке вариант 34

-678

-752

-624

-727

-612

-632

-704

-697

-627

-727

-561

-748

-686

-676

-676

-696

-717

-694

-700

-707

-680

-681

-687

-656

-692

-644

-805

-758

-695

-722

-706

-704

-681

-608

-647

-699

-658

-686

-689

-643

-701

-716

-731

-623

-693

-703

-731

-700

-765

-697

-662

-705

-667

-677

-701

-678

-667

-673

-697

-701

-597

-716

-689

-694

-695

-729

-700

-717

-647

-673

-690

-578

-703

-688

-666

-670

-671

-693

-688

-646

-667

-689

-711

-731

-604

-691

-675

-686

-670

-703

-696

-702

-660

-662

-681

-666

-677

-645

-746

-685



1. Построение вариационного ранжированного ряда


Сортируем экспериментальные данные по возрастанию. Получаем вариационный ряд.


Таблица 1

-805

-727

-705

-700

-695

-689

-681

-673

-662

-632

-765

-727

-704

-700

-694

-688

-680

-671

-660

-627

-758

-722

-704

-700

-694

-688

-678

-670

-658

-624

-752

-717

-703

-699

-693

-687

-678

-670

-656

-623

-748

-717

-703

-697

-693

-686

-677

-667

-647

-612

-746

-716

-703

-697

-692

-686

-677

-667

-647

-608

-731

-716

-702

-697

-691

-686

-676

-667

-646

-604

-731

-711

-701

-696

-690

-685

-676

-666

-645

-597

-731

-707

-701

-696

-689

-681

-675

-666

-644

-578

-729

-706

-701

-695

-689

-681

-673

-662

-643

-561


Вывод: Вариационный ряд послужит нам для облегчения дальнейших расчетов, и для определения относительных частот и разделения на интервалы и расчета ряда числовых характеристик.




2. Расчет числовых характеристик статистического ряда


2.1 Размах варьирования


Размах варьирования вычисляется по формуле:


(2.1)


где R – размах варьирования;

xmax – максимальный элемент вариационного ряда;

xmin – минимальный элемент вариационного ряда;

xmax= – 561

xmin = -805

R = -561+805=244


2.2 Среднеарифметическое значение статистического ряда



(2.2)


где ni – частота варианты xi;

xi – варианта выборки;

n = ∑ ni – объем выборки;

Распределение выборки представлено в таблице 2.


Таблица 2

Xi

n

Xi

n

Xi

n

Xi

n

Xi

n

Xi

n

Xi

n

-805

1

-717

2

-700

3

-689

3

-675

1

-647

2

-608

1

-765

1

-716

2

-699

1

-688

2

-673

2

-646

1

-604

1

-758

1

-711

1

-697

3

-687

1

-671

1

-645

1

-597

1

-752

1

-707

1

-696

2

-686

3

-670

2

-644

1

-578

1

-748

1

-706

1

-695

2

-685

1

-667

3

-643

1

-561

1

-746

1

-705

1

-694

2

-681

3

-666

2

-632

1



-731

3

-704

2

-693

2

-680

1

-662

2

-627

1



-729

1

-703

3

-692

1

-678

2

-660

1

-624

1



-727

2

-702

1

-691

1

-677

2

-658

1

-623

1



-722

1

-701

3

-690

1

-676

2

-656

1

-612

1




Случайные файлы

Файл
worldwar.doc
49840.rtf
160817.rtf
16416.rtf
93213.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.