Геометрические свойства кривых второго порядка (86201)

Посмотреть архив целиком

Цель курсовой работы


Исследовать и изучить геометрические свойства кривых второго порядки (эллипса, гиперболы и параболы), представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершины, а также научиться строить графики данных кривых в канонической и прямоугольной декартовой системах координат.


Постановка задачи


Дано уравнение кривой второго порядка:


. (1)


Задание. Для данного уравнения кривой второго порядка с параметром :

I. Определить зависимость типа кривой от параметра с помощью инвариантов.

II. Привести уравнение кривой при к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.

III. Найти фокусы, директрисы, эксцентриситет и асимптоты (если они есть) данной кривой второго порядка.

IV. Получить уравнения канонических осей в общей системе координат.

V. Построить график кривой в канонической и общей системах координат.


Получение канонической системы координат. Построение графиков


I. Тип кривой второго порядка в зависимости от параметра


В прямоугольной декартовой системе координат кривая второго порядка задается в общем виде уравнением:


,


если хотя бы один из коэффициентов , , отличен от нуля.

Для уравнения кривой второго порядка (1) имеем:



Теперь определим тип данной нам кривой (1) с помощью инвариантов. Инварианты кривой второго порядка вычисляются по формулам:


;

;

.


Для данной кривой они равны:

1). Если , то уравнение кривой (1) определяет кривую параболического типа, но . Таким образом, если , то уравнение (1) определяет кривую параболического типа. При этом , то есть: если , то уравнение (1) определяет параболу.

2). Если, то данная кривая — центральная. Следовательно, при данная кривая — центральная.

  • Если , то уравнение (1) определяет кривую эллиптического типа. Следовательно, если , то данная кривая есть кривая эллиптического типа. Но при этом . В соответствии с признаками кривых второго порядка получим: если, то уравнение (1) определяет эллипс.

    • Если , то уравнение (1) определяет кривую гиперболического типа. Следовательно, если , то уравнение (1) определяет кривую гиперболического типа.

а) Если и , то уравнение (1) определяет две пересекающиеся прямые. Получим:



Следовательно, если , то уравнение (1) определяет две пересекающиеся прямые.

б) Если и , то данная кривая — гипербола. Но при всех за исключением точки . Следовательно, если , то уравнение (1) определяет гиперболу.

Используя полученные результаты, построим таблицу:


Значение параметра β

Тип кривой

Эллипс

Парабола

Гипербола

Две пересекающиеся прямые

Гипербола


II. Переход от общего уравнения кривой к каноническому


Рассмотрим теперь случай, когда, и исследуем данное уравнение кривой второго порядка с помощью инвариантов. Из вышеприведенной таблицы видим, что при уравнение (1) определяет гиперболу и принимает вид:


(2.1)


Приведем уравнение кривой (2.1) к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.

Мы установили, что данная кривая — центральная, поэтому используем методику приведения к каноническому виду для уравнения центральной кривой. Совершим параллельный перенос начала координат в точку . При этом координаты произвольной точки плоскости в системе координат и координаты в новой системе координат связаны соотношениями



Подставляя эти выражения в уравнение (2.1), получим:


(2.2)


Раскрывая скобки и приводя подобные члены, получим:


(2.3)


В уравнении (2.3) коэффициенты при приравняем к нулю. Получим систему уравнений относительно


(2.4)


Решив систему (2.4), получим:



Центр кривой имеет координаты , . Поставим найденные значения в уравнение (2.3). В новой системе координат в уравнении (2.3) коэффициенты при равны нулю и уравнение примет вид


,

. (2.5)


Так как , то дальнейшее упрощение уравнения (2.5) мы достигаем при помощи поворота осей координат на угол . При повороте осей координат на угол координаты произвольной точки плоскости в системе координат и координаты в новой системе координат связаны соотношениями


(2.6)


Подставляя (2.6) в уравнение (2.5), получим



Раскроем скобки и приведем подобные члены



Приводя подобные члены, получим уравнение


(2.7)


Теперь выберем такой угол , что в уравнении (2.7) коэффициент при произведении равен нулю. Получим уравнение относительно синуса и косинуса угла :


. (2.8)


Разделим правую и левую части данного уравнения почленно на . Мы можем это сделать, так как , потому что если (то есть ), то при подстановке в уравнение (2.8) получим, что и , что противоречит основному тригонометрическому тождеству . Получим уравнение


. (2.9)


Решая уравнение (2.9), получим


, .


Зная значение тангенса, можно вычислить значения синуса и косинуса по следующим формулам: , . Подставляя соответствующие значения тангенса, получаем:



Возьмем для определенности . Тогда соответствующие значения синуса и косинуса есть


, (2.10)


Подставляя (2.10) в уравнение (2.7), получаем:



и преобразовав данное уравнение, получим уравнение вида:



И, соответственно, уравнение


(2.11)


это каноническое уравнение исходной гиперболы.


III. Фокусы, директрисы, эксцентриситет и асимптоты кривой


Пусть и — фокусы, — эксцентриситет, — центр, а — директрисы данной гиперболы. Известно, что фокусы имеют координаты: , , где и . Для данного уравнения гиперболы (2.11) получаем, что , , и значит . Отсюда получаем , .

Эксцентриситет гиперболы (2.11)


.


Директрисы гиперболы задаются уравнениями: и . Подставляя найденные значения и , получаем:



Прямые и в канонической системе координат называются асимптотами гиперболы. Для данной гиперболы (2.11) асимптоты имеют вид:



IV. Уравнения осей гиперболы в общей системе координат


Теперь напишем уравнения осей новой системы в исходной системе координат .

Так как система — каноническая для данной гиперболы, то ее центр находится в центре кривой — , то есть оси и проходят через точку .

В пункте II было установлено, что угловой коэффициент оси .

Уравнение прямой, проходящей через данную точку с заданным угловым коэффициентом , имеет вид . Следовательно, ось в системе координат задана уравнением , или , где в роли точки выступает центр гиперболы точка .

Так как ось перпендикулярна оси , то ее угловой коэффициент . Следовательно, ось в системе координат задана уравнением , или .


V. Построение графиков гиперболы


Используя полученные в ходе выполнения задания данные, построим гиперболу (2.1) в исходной системе координат (см. рис. 1) и гиперболу (2.11) в канонической системе координат (см. рис. 2).


Рисунок 1.


Рисунок 2.


Вывод


Таким образом, из вышеприведенного решения видим, что с помощью инвариантов можно отследить тип кривой второго порядка с параметром , а используя параллельный перенос и поворот осей координат, можно привести кривую второго порядка от общего вида к каноническому.



Список используемой литературы


1. Л.В. Бобылева, Л.С. Брюхина. Линейная алгебра и аналитическая геометрия. Исследование кривых второго порядка.— Дубна: Международный университет природы, общества и человека «Дубна», 2003.

2. Ильин В. А., Позняк Г. Д. Аналитическая геометрия. — М.: Физматлит , 2002.

3. М.Я. Выгодский. Справочник по высшей математике.— М: Наука, 1966.

4. А.В. Ефремов, Б.П. Демидович. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа (Ч. 1). — М.: Наука, 1993.



Случайные файлы

Файл
73868.rtf
38392.doc
12197.rtf
CBRR2828.DOC
1.doc




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.