Расчет математического ожидания и дисперсии (86172)

Посмотреть архив целиком

1. Пароль для входа в компьютерную базу данных состоит из 7 цифр. Какова вероятность правильного набора пароля с первого раза, если: д) на нечетных местах комбинации стоят одинаковые цифры


Решение:


P(A) =


n – общее число исходов.

Допустим на нечетных местах стоит 0_0_0_0_0

На трех других местах может быть: n0= комбинаций ( 10 цифр, 3 места), если на нечетных местах стоит 1, и т.д.

n= n0+n2+…+n0=10∙=

m= число благоприятных исходов

m=0

P(A) = =0,0001

Ответ: 0,0001


2. Девять карточек, пронумерованных цифрами от 1 до 9, расположены друг за другом в случайном порядке. Определить вероятности следующих событий: Г) каждая из последних 4 карточек имеет номер больше 3


Будем использовать классическое определение вероятности:


,


где m – число исходов, благоприятствующих осуществлению события , а n – число всех элементарных равновозможных исходов.

Сразу вычислим, что - число различных способов разложить карточки.

Найдем число исходов, благоприятствующих этому событию. Номер больше трех имеют карточки: 4,5,6,7,8,9, всего 6 карточек. Выбираем на последнее место карточку 6 способами (любую из этих шести), на предпоследнее место карточку 5 способами (любую из оставшихся пяти, одна уже выбрана), на третье с конца место карточку 4 способами, на четвертое с конца место карточку 3 способами. Получили всего способов разложить последние 4 карточки так, чтобы их номер был больше 3. Теперь раскладываем оставшиеся 5 карточек 5!=120 способами. Итого получаем 120*360=43200 способов.

Тогда вероятность .

Ответ: 0,119


3. Отрезок AB разделен точкой C в отношении 3:7. На этот отрезок наудачу бросается 5 точек. Найти наивероятнейшее число точек, попавших на отрезок AC и вероятность именно такого числа точек на отрезке AC


Бросается 5 точек n=5

Вероятность попасть на АС для одной точки Р== 0,3

1)-наивероятнейшее число точек, попавших на АС


np –q ≤< np +p


p= 0,3; q=1-p=0,7

5∙ 0,3-0,7 ≤ < 5∙ 0,3+ 0,3

0,8 ≤ < 1,8

=1

2) Вероятность именно такого числа точек на АС

(1)=?

Применим формулу Бернулли.


(K) = . . ;


(1)= . . = ∙0,3 ∙= 5 ∙ 0,3∙ = 0,36

Ответ: 0,36


4. Устройство состоит из трех независимо работающих элементов. Вероятности отказа первого, второго и третьего элементов соответственно равны 0,2, 01 и 0,6. Найти вероятность того, что не отказал первый элемент, если известно, что отказали какие-то два элемента


Решение. =0,2 =0,1 =0,6 - отказ.

= 1- =0,8 =0,4- не отказ.

Событие А- отказали какие-то два

- первый отказал Р()=0,2=

(А)=+ 0,2∙0,1∙0,4+ 0,2∙0,9∙0,6=0,116

-первый не отказал Р=0,8=

(А)= 0,048

По формуле полной вероятности

P(A)=0,2∙0,116+0,8∙0,048=0,0616

Искомую вероятность найдем по формуле Байеса:


()= =


Ответ: 0,62






5. Бросаются две игральные кости. Найти для произведения очков на выпавших гранях: математическое ожидание; дисперсию


Решение. Введем независимые случайные величины и равные, соответственно, числу очков, выпавших на первой и на второй кости. Они имеют одинаковые распределения:


1

2

3

4

5

6

1/6

1/6

1/6

1/6

1/6

1/6


Найдем математическое ожидание


.


Найдем дисперсию


.


Тогда математическое ожидание суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равно


.


Дисперсия суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равна (так как бросания костей независимы):






.


Ответ: 7; 35/6.


6. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 30 и 4. Найти вероятность того, что Х в 5 испытаниях ровно 3 раза примет значение, заключенное в интервале (29, 31)


Решение. Используем формулу


,


где математическое ожидание, среднее квадратическое отклонение α=29, β=31.

P(29<х<31)=Ф(=Ф(0,25)-(0,25)= Ф(0,25)+Ф(0,25) = 2∙Ф(0,25) = 2∙0,3413∙0,25 = 0,17065 Ответ: 0,17065


7. В порядке серийной выборки из 1000 контейнеров бесповторным отбором взято 10 контейнеров. Каждый контейнер содержит равное количество однотипных изделий, полученных высокоточным производством. Межсерийная дисперсия проверяемого параметра изделия равна 0,01. Найти: границы, в которых с вероятностью 0,99 заключено среднее значение проверяемого параметра во всей партии, если отобрано 50 контейнеров, а общая средняя равна 5


При беспроводном отборе применяется формула:





n=


N=1000 n==5

p=0,99 ≈0,98

Подставим:

5=

5=

5000+0,049=98

0,049=98

Т.к. х=5, то интервал 50,14


Случайные файлы

Файл
129161.rtf
DEMOCRAT.DOC
177935.rtf
94493.rtf
94291.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.