Парадоксы в математике (85979)

Посмотреть архив целиком

СПЕЦИАЛЬНОСТЬ: "Финансы и кредит"











КОНТРОЛЬНАЯ РАБОТА

ПО ДИСЦИПЛИНЕ: "Математика"

Парадоксы в математике


Содержание


Введение

Глава I. Парадоксы в математике

1.1 Свойство парадоксов

1.2 Устранение и объяснение парадоксов

Глава II. Многообразие парадоксов

2.1 Парадокс "Лжец"

2.2 Парадокс Греллинга

2.3 Парадокс Берри

2.4 Парадоксы со множествами

2.5 Парадоксы-петли

Глава III. Проблемы парадоксов в математике

Заключение

Библиография


Введение


Парадокс в широком смысле - это утверждение, резко расходящееся с общепринятыми, устоявшимися мнениями, отрицание того, что представляется "безусловно правильным". Само греческое слово, от которого произведено слово "парадокс", буквально означало "необычное, странное, невероятное, замечательное".

Парадокс в более узком и более современном значении - это два противоположных утверждения, для каждого из которых имеются представляющиеся убедительными аргументы.

Особое место занимают парадоксы в математике и логике, так как "чистая математика" - абстрактная наука, построенная на теориях, которые не кажутся очевидными с первого взгляда. Здесь их статус глубоких и кардинальных проблем не подвергается сомнению. Тем более, что в математике, как ни в одной другой науке, особое внимание обращается на строгость и логическую последовательность доказательств. При этом часто возникают ситуации, в которых рассуждения, применяющиеся совсем недавно и считающиеся строгими, будут требовать дополнительного обоснования. Тогда математик просто излагает свои идеи в том виде, как они у него возникают. Однако часто возникает необходимость сделать выбор между методами изложения некорректными, но, быть может, плодотворными, и корректными, но позволяющими выразить мысль лишь в измененном виде и притом ценой значительных усилий. Ни тот, ни другой путь не свободен от опасностей. Первый путь ведет к возникновению и развитию новых теории и нового уровня абстракции, а, следовательно, и парадоксов, второй к "затуханию науки". Поэтому данная курсовая работа ставит перед собой цель рассмотреть понятие "парадоксов", их виды, а также проблемы парадоксов в математике и их значение для развития математической науки.


Глава I. Парадоксы в математике


Парадокс - это два противоположных утверждения, для каждого из которых имеются представляющиеся убедительными аргументы.

Парадоксы были типичными способами постановки проблем в античном мышлении. Сначала парадоксы рассматривались только как продукт философских измышлений, теперь наука признала их полноправными членами сообщества научных проблем.

Парадоксы возникают в современных прикладных науках также часто, как и в древних. В свое время (VII в. до н. э) вавилонские жрецы-астрологи заметили, что некоторые планеты временами замедляют движение, пятятся назад, а затем снова продолжают движение в обычном направлении. Гераклид Пантийский смог объяснить "явление блуждающих светил" с помощью математической теории эпицикла. Но при этом оставались другие проблемы - не все светила вели себя по этой схеме. Долгое время ученые с помощью своих теорий (геометрическая, механическая) не могли объяснить "дуализм света" (XVIII-XIX вв.), только предположение Д.К. Максвелла о электромагнитной природе света разрешило эту проблему. Таким образом, можно считать, что парадоксы возникают в науке там, где теория не описывает процессы должным образом. Разрешение таких парадоксальных явлений ведет в свою очередь к возникновению новых теорий.


1.1 Свойство парадоксов


Все парадоксы имеют одно общее свойство - самоприменимость (циркулярность). В каждом из них объект, о котором идет речь, характеризуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, самого хитрого человека, мы делаем это при помощи совокупности людей, к которой относится и данный человек. И если говорим: "Это высказывание ложно", мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний.

Во всех парадоксах имеет место самоприменимость понятий, а значит, есть как бы движение по кругу, приводящее, в конце концов, к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывается, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов.


1.2 Устранение и объяснение парадоксов


Следует обратить внимание на одно важное различие. Устранение парадоксов и их разрешение - это вовсе не одно и то же.

Устранить парадокс из некоторой теории - значит перестроить ее так, чтобы парадоксальное утверждение оказалось в ней недоказуемым.

Каждый парадокс опирается на большое число определений, допущений и аргументов. Его вывод в теории представляет собой некоторую цепочку рассуждений. Формально говоря, можно подвергнуть сомнению любое ее звено, отбросить его и тем самым разорвать цепочку и устранить парадокс. Во многих работах так и поступают и этим ограничиваются. Но это еще не разрешение парадокса. Мало найти способ, как его исключить, надо убедительно обосновать предлагаемое решение. Само сомнение в каком-то шаге, ведущем к парадоксу, должно быть хорошо обосновано.

Прежде всего, решение об отказе от каких-то логических средств, используемых при выводе парадоксального утверждения, должно быть увязано с нашими общими соображениями относительно природы логического доказательства и другими логическими интуициями. Если этого нет, устранение парадокса оказывается лишенным твердых и устойчивых оснований и вырождается в техническую по преимуществу задачу.

Кроме того, отказ от какого-то допущения, даже если он и обеспечивает устранение некоторого конкретного парадокса, вовсе не гарантирует автоматически устранения всех парадоксов. Это говорит о том, что за парадоксами не следует "охотиться" поодиночке. Исключение одного из них всегда должно быть настолько обосновано, чтобы появилась определенная гарантия, что этим же шагом будут устранены и другие парадоксы.

Однако надо иметь в виду, что непродуманный и неосторожный отказ от слишком многих или слишком сильных допущений может привести просто к тому, что получится хотя и не содержащая парадоксов, но существенно более слабая теория, имеющая только частный интерес.


Глава II. Многообразие парадоксов


2.1 Парадокс "Лжец"


Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс "Лжец", сформулированный греческим философом Эвбулидом из Милета в IV веке до н.э.

Имеются различные варианты этого парадокса. В простейшем варианте "Лжеца" человек произносит всего одну фразу: "Я лгу", или говорит: "Высказывание, которое я сейчас произношу, является ложным". Традиционная лаконичная формулировка этого парадокса гласит: если лгущий говорит, что он лжет, то он одновременно лжет и говорит правду.

Данный парадокс можно переформулировать и так. Допустим, что на лицевой стороне карточки стоят слова: "На другой стороне этой карточки написано истинное высказывание" - и ничего более. Ясно, что эти слова представляют собой осмысленное утверждение. Перевернув карточку, мы находим на ее обороте слова: "На другой стороне этой карточки написано ложное высказывание" - и опять-таки ничего более. Предположим, что утверждение на лицевой стороне - истинно. Тогда утверждение на обороте должно быть истинным и, значит, утверждение на лицевой стороне должно быть ложным. Но если утверждение с лицевой стороны ложно, тогда утверждение на обороте также должно быть ложным и, следовательно, утверждение на лицевой стороне должно быть истинным. Выходит, что данное утверждение не может быть ни истинным, ни ложным. Но это противоречит принципу исключенного третьего. Парадокс ошеломляющий. Он произвел громадное впечатление на греков. Ходит даже легенда, что он привел к самоубийству некоего Филита Косского. Этот парадокс разбил Аристотель и многие другие логики, жившие позднее. Некоторые философы считали, что поскольку рассматриваемое утверждение содержит ссылку на самое себя, то оно просто не имеет смысла, а бессмысленные высказывания должны быть исключены из языка.

С развитием логики в нем стали видеть смешение двух языков: языка, на котором говорится о предметах, существующих в мире, и языка, служащего для описания самого такого "предметного" языка. В нашем обычном языке эти два уровня не различаются.

Было предложено другое объяснение, основанное на анализе одной весьма необычной особенности этого высказывания. Дело в том, что это высказывание одновременно является актом действия; причем как раз то, что в этом высказывании утверждается, в то же время становится и действием. Более того, высказывание и действие разорвать нельзя. Такие высказывания встречаются не так уж и редко. Например: "Я клянусь", "Я говорю", "Я лгу", и т.п. Высказывания такого рода называются перформативными и к ним как считают некоторые авторы, не применимы какие-либо оценки их истинности. Их истинность зависит от того, когда, кем и где они употребляются.

Выше было сказано, что парадокс "Лжец" возникает из-за смешения двух языков. Как же связан этот парадокс с ними. Еще античные философы заметили, что каждое высказывание естественного языка выражает определенную мысль, но не несет никакой информации о том, истинна ли эта мысль или нет. Более того, они показали, что именно это утверждение об истинности того или иного высказывания не может быть выражено в естественном языке. Рассуждали они следующим образом. Пусть A0 есть некоторое высказывание, например: "1 января шел снег", и пусть это событие действительно имело место. Но так как из содержания высказывания А0 не следует, что оно истинно, то необходимо дополнительное высказывание A1: "Высказывание A0 истинно". Нетрудно, однако, заметить, что истинность высказывания A1 тоже ниоткуда не следует. Поэтому необходимо новое высказывание А2: "Высказывание A1 истинно" и т.д. до бесконечности.


Случайные файлы

Файл
160979.rtf
16568.rtf
143610.rtf
114213.rtf
70706-1.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.