Экзаменационные билеты (ex23s)

Посмотреть архив целиком

Экзаменационные билеты по курсу «Математический анализ». 2-й курс, 3-й семестр. Ф-ты МТ, РК, Э

Экзаменационный билет №1

  1. Дать определение двойного интеграла и сформулировать его свойства.

  2. Вычислить объем тела, ограниченного данными поверхностями:

  1. Доказать теорему Гаусса-Остроградского для правильной области

  2. Вычислить криволинейный интеграл


Вдоль ломаной АВС, где А(0,1), В(1,1), С(2,0)



Экзаменационный билет №2

  1. Дать определение тройного интеграла и сформулировать его свойства.

  2. Изменить порядок интегрирования и перейти к полярным координатам:

  1. Дивергенция векторного поля. Вывести формулу для вычисления дивергенции в декартовой системе координат.

  2. Вычислить криволинейный интеграл





Где АВ – дуга кривой

От точки А(0,1) до точки В (2,exp(2)), ВС – отрезок прямой С(2,0)




Экзаменационный билет №3

  1. Доказать теоремы об оценке и среднем для двойного интеграла.

  2. Вычислить объем тела, ограниченного поверхностями

  1. Оператор Гамильтона, запись с его помощью дифференциальных операций векторного анализа.

  2. Вычислить поток векторного поля a=(2x+1)i-zj+4zk через полную поверхность тела, задаваемого неравенствами (нормаль внешняя):


Экзаменационный билет №4

  1. Вычисление двойного интеграла в декатровых координатах с помощью повторного (для правильной области)

  2. Вычислить объем тела, ограниченного поверхностями

  1. Вывести формулу Грина для односвязной области.

  2. Вычислить поток векторного поля

через полную поверхность пирамиды, ограниченной плоскостями

(нормаль внешняя)



Экзаменационный билет №5

  1. Доказать теоремы об оценке и о среднем для двойного интергала

  2. Изменить порядок интегрирования и перейти к полярным координатам в интеграле


  1. Доказать теорему Стокса

  2. Проверить, что под знаком интеграла

стоит полный дифференциал некоторой функции, и вычислить этот интеграл.


Экзаменационный билет №7

  1. Вывести формулы для вычисления координат центра масс неоднородной плоской фигуры.

  2. Изменить порядок интегрирования

  1. Формула Ньютона-Лейбница для криволинейного интеграла 2-го рода. Нахождение по ее полному дифференциалу с помощью криволинейного интеграла

  2. Вычислить с помощью формулы Стокса циркуляцию векторного поля

Вдоль замкнутого контура L обходимого в направнении А(2,0,0)=>B(0,0,3)=>C(-2,0,0)=>… L- эллипс

Экзаменационный билет №8

  1. Вывести формулы для вычисления координат центра масс неоднородного тела.

  2. изменить порядок интегрирования.

  1. Циркуляция и ротор векторного поля. Объяснить физический смысл ротра. Солоноидальность поля ротора.

  2. Вычислить с помощью формулы Грина интеграл

Где АВСА – замкнутая ломаная А(0,0)->B(0,-1)-> C(1,1)->A(0.0)


Экзаменационный билет №9

  1. Сформулировать теорему о замене переменных в двойном интеграле. Вычисление двойного интергала в полярных координатах.

  2. Вычислить объем тела, ограниченного следующими поверхностями

  1. Дать определение криволинейного интеграла 1-го рода, сформулировать его свойства. Вычисление криволинейного интеграла 1-го рода в декатровой системе координат.

  2. Вычислить поток векторного поля

Через плоскость z=1, определяемую неравенствами

(нормаль составляет острый угол с вектором(1,1,1)

Экзаменационный билет №10

  1. Сформулировать теорему о замене переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрических координатах.

  2. Вычислить площадь части поверхности

вырезаемой из нее плоскостями z=+y; z=-y

  1. Дать определение криволинейного интеграла 2-го рода, сформулировать его свойства. Вычисление криволинейного интеграла 2-го рода в декатровой системе координат.

  2. Вычислить поток векторного поля

Через полную поверхность тела, определяемого неравенствами (нормаль внешняя)


Экзаменационный билет №11

  1. сформулировать теорему о замене переменных в тройном интеграле. Вычисление интеграла в сферических координатах.

  2. Вычислить площадь части поверхности

,

вырезамой поверхностью

  1. Дать определение порехности интеграла 1-го рода и вывести формулы для его вычисления в декартовой системе координат.

  2. Вычислить с помощью формулы Грина

Где АВСА – контур, образованный треугльником А(-1,2), В(1,0), С(2,2)


Экзаменационный билет №12

  1. Несобственные двойные интегралы 1-го рода. Привести примеры сходящихся и расходящихся интегралов.

  2. Вычислить площадь части поверхности

вырезаемой поверхностью

  1. Потенциальное векторное поле и его свойства. Вычисление криволинейног интеграла в потенциальном поле.

  2. Вычислить поток векторного поля

Через полную поверхность тела, определяемого неравенствами (нормаль внешняя)

Экзаменацонный билет №13

  1. Вывод формул для моментов инерции плоских фигур и пространственных тел.

  2. Вычислить интеграл

Если область V ограничена поверхностями y=3x, y=0, z=xy, z=0, x=1

  1. Оператор Лапласа. Гармонические функции. Гармонические векторные поля.

  2. Проверить, что криволинейный интеграл

Не зависит от пути, соединяющего точки, и вычислить этот интеграл.


Экзаменационный билет №14

  1. Приложения вторых интегралов. Вычисление объемов тел и площади поверхности.

  2. Найти массу неоднородного тела заданного неравенствами

если его плотность