Рентгеновские телевизионные системы (63900)

Посмотреть архив целиком

Рентгеновские телевизионные системы (РТС) можно разделить на две группы: РТС для рентгеноскопии и РТС для рентгенографии, хотя это деление достаточно условно. Появление этих систем вызвано, прежде всего, обострившейся за последние годы проблемой рентгеновской пленки. По времени раньше возникли РТС для рентгеноскопии (или просвечивания). В практике рентгенодиагностики они называются также усилителями рентгеновского излучения (УРИ) и включают в себя рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутую телевизионную систему. УРИ позволили значительно уменьшить интенсивность рентгеновского излучения за счет снижения анодного напряжения и очень значительного уменьшения анодного тока. Так, например, съемка грудной клетки в режиме рентгенографии проводится при анодном токе 600 мА и напряжении 100 – 120 кВ, а при рентгеноскопии с РТС анодный ток составляет 3 – 5 мА, а напряжение 80 – 90 кВ. Таким образом, интенсивность излучения снижается в сотни раз, что позволяет соответственно увеличить время обследования. Как отмечалось выше, главной задачей РТС является не уменьшение дозы облучения (хотя и это тоже очень важно), а повышения достоверности диагностики, что достигается увеличением продолжительности наблюдения. РТС пока еще не исключают полностью применения рентгеновской пленки, но зато практически гарантируют безошибочность снимка, сделанного после предварительного обследования.

Первые РТС были аналоговыми, а для регистрации рентгеновских изображений в них использовались фото- и кинокамеры и видеомагнитофоны. Структурная схема такой РТС приведена на рис.1.


Рисунок 1. Структурная схема рентгено-телевизионной системы.


В камере 1, защищающей от проникновения света и бокового рентгеновского излучения, находятся РЭОП 2, оптические системы 3, полупрозрачное зеркало 4, передающая телевизионная камера 5 и фотоаппарат 8. РЭОП преобразует рентгеновское излучение, прошедшее через объект, в оптическое изображение, которое оптическими системами и полупрозрачным зеркалом передается на телекамеру и фотоаппарат. Телекамерой управляет блок видеоканала 6 и передает видеосигнал в видеоконтрольное устройство (ВКУ) 6. Изображение может быть зарегистрировано также с помощью видеомагнитофона 9. Блок 10 осуществляет питание и управление системой. Наиболее важными узлами РТС, определяющими качество ее работы, являются РЭОП и передающая телекамера. Рассмотрим их более подробно. Так как аббревиатура «РЭОП» распространена в литературе по рентгеновской технике, будем обращаться с ней, как со словом. Устройство и принцип действия РЭОПа поясняет рис.2.


Рисунок 2. Рентгеновский электронно-оптический преобразователь.


РЭОП представляет собой крупногабаритный электровакуумный прибор с остаточным давлением 1 – 510-7 мм рт. ст. Внутри колбы находятся фотокатодный узел, состоящий из входного флуоресцентного экрана 1 и фотокатода 2, система электродов 3,4,5 и выходной люминесцентный экран 6. Флуоресцентный слой (CaWO4 или CsI) и слой фотокатода (Cs) нанесены с двух сторон тонкой стеклянной пластины толщиной 200 мкм. Световые фотоны, излучаемые под действием рентгеновского излучения, выбивают из фотокатода электроны, которые ускоряются и фокусируются системой электродов. Электрод 1 (подфокусирующий) представляет собой слой аммония, напыляемый на внутреннюю поверхность колбы. Энергия электронного потока, выходящего из фотокатода, увеличивается за счет прилагаемых к электродам высоких напряжений. Одновременно увеличивается плотность электронов за счет сжатия электростатическими линзами. Электроны бомбардируют выходной экран 6, представляющий собой мелкозернистый люминограф, напыленный на внутреннюю сторону окна колбы. Диаметр входного окна современных РЭОПов составляет 220 – 350 мм. Начинается выпуск РЭОПов с диаметром входного окна до 550 мм.

Наряду с РЭОПами в рентгеновских телевизионных системах применяют и ЭОПы – электронно-оптические преобразователи. От РЭОПов они отличаются отсутствием у них рентгеновского люминесцентного экрана. Поэтому они служат для усиления яркости оптического изображения, получаемого на внешнем люминесцентном экране. Обычно габариты ЭПОв значительно меньше, чем РЭОПОв.

Важнейшими параметрами РЭОПа, определяющими его усилительно-преобразовательные свойства и влияющими на качество конечного изображения, являются коэффициент преобразования, коэффициент усиления, разрешающая способность, шумовые параметры, частотно-контрастная характеристика, динамический диапазон.

Коэффициент преобразования есть отношение яркости выходного экрана к мощности дозы входного излучения


 = B/P [кдм-2/мРс-1].


Коэффициент преобразования  зависит от ряда параметров и определяется формулой


 = вх.экр 2UaL , (1)


где вх.экр – коэффициент преобразования входного экрана ( 2кдм-2мРс-1),  - чувствительность фотокатода (15 мкА/млк) , Г – коэффициент элетронно-оптического уменьшения (1), Ua – напряжение основного анода 5 (25 кВ), L – светоотдача выходного экрана (12 кд/Вт). В скобках указаны типичные значения параметров. Для них коэффициент преобразования будет равен 110 кдм-2мРс-1.

Коэффициент усиления представляет собой отношение интенсивности выходного оптического излучения к интенсивности входного рентгеновского излучения. Даже с учетом потерь в оптической системе он достигает нескольких тысяч.

Разрешающая способность РЭОПа оценивается количеством различимых пар линий на 1 мм в центре выходного экрана.

Частотно-контрастная характеристика (ЧКХ) представляет собой зависимость контраста изображения объекта от пространственной частоты. Понятно, что передача контраста и разрешающая способность – взаимосвязанные величины.

Динамический диапазон есть отношение интенсивностей РИ, при которых устройство обеспечивает различение некоторого порогового (обычно 5%) контраста одновременно в верхнем и нижнем интервалах рабочих мощностей доз. Динамический диапазон РЭОПов обычно значительно превосходит динамический диапазон яркости ВКУ (около 30 дБ). Параметры некоторых типов РЭОП приведены в табл. 1.


Таблица 1. Параметры рентгеновских электронно-оптических преобразователей.


Параметр

РЭОП

RBV 250/150

«Сименс» (ФРГ)

РЭОП

«ЗОКС-270»

РЭОП

фирмы CGR

Размер рабочего поля, мм

Коэффициент преобразования, кд/м2/мР/с

Разрешающая способность, пл/мм

Контрастная чувствительность, %

Коэффициент контраста (10% площади)

Анодное напряжение, кВ

250/150

170

3 – 4

2


25 - 30

230/150

140

3 – 4

3


25

400/300/220

120

3,6/4,2/4,8



15:1


Для считывания оптического изображения с выходного экрана РЭОПа и передачи его в оптический канал применяют различные фотоэлектрические преобразователи ФЭП – в основном это передающие трубки типа видикон и ФЭП матричного типа на основе приборов с зарядовой связью (ПЗС). Трубки

типа видикон характеризуются высокой световой чувствительностью и высокой разрешающей способностью. Существует несколько разновидностей видиконов: плюмбикон (с окисло-свинцовой мишенью), кремникон (с полупроводниковой мишенью на основе кремния) и др.


На рис.3 показано устройство видикона типа плюмбикон.


Рисунок 3. Устройство видикона.


Видикон представляет собой стеклянный вакуумный баллон 1, внутри которого на торцевой поверхности нанесена светочувствительная мишень 2. Последняя состоит из прозрачной металлической пленки, называемой сигнальной пластиной, и контактирующего с ней тонкого фотопроводящего слоя. Вид этого слоя и определяет тип видикона (плюмбикон, кремникон, кадмикон). Сигнальная пластина соединена с металлическим кольцом 3, которое выведено наружу баллона.

Вторым функциональным узлом видикона является электронный прожектор, включающий в себя подогревный катод 4, модулятор 5 и аноды 6. Он обеспечивает ускорение и формирование узкого пучка электронов. Непосредственно у сигнальной пластины расположена мелкоструктурная сетка 8, которая создает равномерное тормозящее поле перед мишенью. Благодаря этому электроны падают перпендикулярно на фотослой по всей его площади. Фокусировку и отклонение электронного луча 7 обеспечивает магнитная фокусирующе-отклоняющая система. Для фокусировки электронного луча используется соленоид 9. Пролетающие сквозь него электроны группируются (закручиваются по спирали) вблизи его оси. Отклонение луча производится парами отклоняющих катушек 10 – горизонтальной (строчной) и вертикальной (кадровой).

Изображение проецируется на светочувствительный слой мишени. В результате каждый ее элементарный участок приобретает электрический заряд. Образуется так называемый потенциальный рельеф. Электронный луч, взаимодействуя с каждой точкой потенциального рельефа, как бы стирает (нейтрализует) ее потенциал. При этом через сопротивление нагрузки Rн, протекает ток, который будет зависеть от освещенности участка мишени, куда попадает электронный луч. Таким образом, на нагрузке выделяется видеосигнал. Его напряжение будет изменяться от уровня «черного», соответствующего наиболее темным участкам передаваемого изображения, до уровня «белого», соответствующего наиболее светлым участкам.


Случайные файлы

Файл
7458-1.rtf
70216.rtf
150311.rtf
113474.rtf
163353.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.