Функциональная электроника (63351)

Посмотреть архив целиком










Расчетно-графическая работа

по предмету: Функциональная электроника


СОДЕРЖАНИЕ


1. ВВЕДЕНИЕ 3

2. НЕКОГЕРЕНТНЫЕ ИЗЛУЧАТЕЛИ 5

2.1. Принцип действия светодиодов 5

2.2. Конструкции светодиодов 10

3. Когерентные излучатели 14

СПИСОК ЛИТЕРАТУРЫ 19



1. ВВЕДЕНИЕ


Оптоэлектроника (ОЭ) – это область науки и техники, связанная с разработкой и применением комбинированных электронно-оптических устройств и систем для передачи, приема, обработки, хранения и отображения информации.

ОЭ оказывает заметное влияние на сферу информатики и индустрии обработки данных.

В последнее время интенсивно развиваются оптические методы обработки информации в основном по трем направлениям:

1) создание цифровых оптических вычислительных машин (ОВМ) с широким применением различных оптоэлектронных и оптических компонентов, волоконной оптики, оптических запоминающих устройств и процессоров и др. Теоретические оценки показывают, что такие машины могут иметь быстродействие порядка нескольких миллиардов операций в секунду и повышенную надежность благодаря отсутствию задержек, присущих электрическим сигналам, двумерному характеру исходной информации нечувствительности к внешним и перекрестным помехам и т.д.;

2) создание аналоговых ОВМ, принцип действия которых основан на том, что определенная комбинация достаточно простых оптических элементов (линз, дифракционных решеток, голограмм и др.) позволяет осуществлять над оптическим сигналом весьма сложные интегральные преобразования, используемые вместо элементарных операций арифметического суммирования и логического сравнения в ЭВМ. Однако, ОВМ аналогового типа имеют сравнительно малую точность вычислений (в пределах нескольких процентов), и их целесообразно применять в тех случаях, когда требуется быстро обрабатывать значительные объемы информации без повышенных требований к точности вычислений;

3) создание ОВМ с картинной логикой, осуществляющих одновременную обработку больших массивов информации в виде двухмерных изображений.

Перспективы практического применения большей части рассмотренных устройств определяются уровнем развития интегральной оптики – нового физико-технического и схемотехнического направления ОЭ, позволяющего создать методами интегральной технологии микроминиатюрные твердотельные устройства, содержащие как пассивные (линзы, зеркала, призмы, дифракционные решетки), так и активные (излучатели, фото приемники, модуляторы, дефлекторы и т.д.) оптоэлектронные элементы.

В зависимости от характера оптического сигнала различают когерентную и некогерентную оптоэлектронику.

Когерентная ОЭ базируется на использовании лазерного излучения. К некогерентной ОЭ относят дискретные и матричные некогерентные излучатели и построенные на их основе цифровые индикаторные устройства визуального представления информации, шкалы, табло, экраны, а также фото приемные устройства, оптопары, оптронные интегральные микросхемы (ИМС) и др.


2. НЕКОГЕРЕНТНЫЕ ИЗЛУЧАТЕЛИ


2.1. Принцип действия светодиодов


В качестве некогерентных излучателей можно использовать сверх миниатюрные накальные и газоразрядные лампочки, порошковые, пленочные люминофоры, светоизлучающие диоды и т.д. Однако требованиям предъявляемым к оптоэлектронному прибору, удовлетворяют лишь светоизлучающие диоды, характеризующиеся высокой эффективностью прямого преобразования электрической энергии в световую, надежностью и большим сроком службы, устойчивостью к механическим и климатическим воздействиям, высоким быстродействием.

Целесообразно разделить светодиоды на две группы: 1) светодиоды, излучающие в видимом диапазоне спектра и используемые, главным образом, для отображения информации; 2) ИК светодиоды, применяемые в оптронах и волоконно-оптических линиях связи.

Хотя изготавливают светодиоды обеих групп из различных полупроводниковых материалов, принцип действия их одинаков и основан на явлении спонтанной инжекционной электролюминисценции – инжекции неосновных носителей в активную область прямосмещенного p-n-, гомо - или гетероперехода с последующей излучательной рекомбинацией в этой области.

Специфика процессов инжекции в светодиодах заключается в том, что одна из областей p-n-перехода должна быть оптически активна, т.е. должна обладать высоким внутренним квантовым выходом излучения.

Как известно, полное число излучательных переходов в единице объема при межзонной рекомбинации равно произведению , где В – коэффициент рекомбинации; np – неравновесная концентрация электронов в активной p-области; pp0 – равновесная концентрация дырок в этой области.

Очевидно, что p-n-переход с высоким внутренним квантовым выходом ηвн, равным отношению числа генерируемых в базе фотонов к числу инжектированных в нее неосновных носителей, должен быть изготовлен из прямозонного полупроводника, для которого В10-10 см3/с (для непрямозонных полупроводников В≈10-14 см3/с). В отношении уровня легирования p - и n-областей возникают противоречивые требования: с одной стороны, для увеличения np необходимо, чтобы коэффициент инжекции γп→1, а это связано с понижением уровня легирования базы Na; с другой стороны, для увеличения pp0 этот уровень следует повышать. Как правило, выбирают компромиссный вариант: оптимальный уровень легирования активной области составляет 1017 – 1018 см-3 для доноров и 3.1018 – 3.1019 см-3 для акцепторов.

Кардинальное решение данной проблемы дает использование гетеропереходов. В этом случае благодаря эффекту суперинжекции можно получить заданное np при не очень сильно легированном эмиттере. Односторонняя инжекция (γп→1) обеспечивается за счет разницы в ширине запрещенных зон используемых полупроводников: .

Межзонные излучательные переходы конкурируют с безызлучательными и излучательными переходами, связанными с рекомбинацией через промежуточные состояния (дефекты структуры, посторонние примеси и включения, глубокие примесные центры, поверхностные состояния и т.д.). Все эти конкурирующие переходы, которые можно охарактеризовать некоторым эффективным временем жизни τбезизл, снижают величину ηвн, поскольку сопровождаются исчезновением инжектированных в базу носителей для генерирования фотона соответствующей энергии.

Снижение доли безызлучательной рекомбинации (увеличение τбезызл) – одна из важнейших задач технологии светодиодов, направленная на повышение ηвн. Для подавления безызлучательных переходов принимают разнообразные меры: 1) оптимизируют излучательные структуры с целью снижения концентрации дефектов на границах слоев, исключения безызлучательной рекомбинации на поверхности и т.д.; 2) используют качественные эпитаксиальные слои, полученные методами жидкостной, газовой или молекулярно-лучевой эпитаксии. Из-за низкой температуры и невысокой скорости роста таких слоев резко снижается плотность дислокаций и других дефектов структуры, концентрация посторонних примесей. Например, в слоях Ga1-xAlxAs при x‹0.3, полученных методом жидкостной эпитаксии, вероятность безызлучательной рекомбинации сведена практически к нулю (τбезызл→∞), и, следовательно, ηвн приближается к 100%.

Важной задачей является также снижение доли поглощаемого внутри кристалла излучения. Существует три метода борьбы с этим явлением.

Уменьшение энергии фотонов за счет компенсации примесей в активной области. По такому принципу созданы эпитаксиальные p-n-структуры в GaAs, легированным кремнием, в которых генерируются фотоны с энергией, меньшей ширины запрещенной зоны (hvизл‹Eg). При этом коэффициент поглощения не превышает 100 см-1. В GaAs: Si-структурах ηвн составляет 40 – 70%. Основным недостатком таких структур является невысокое быстродействие.

Использование непрямозонных полупроводников в частности GaP. Известно, вероятность межзонной рекомбинации в GaP невелика (В5.10-14 см3/с), однако при наличии подходящего промежуточного примесного центра она резко возрастает. К сожалению, выбор таких центров ограничен. Так, для GaP ими могут служить азот и комплексы Zn-O. Эти центры создают глубокие энергетические уровни в запрещенной зоне, поэтому потери на межзонное поглощение отсутствуют ().

Использование эффекта «широкозонного окна» в гетероструктурах. Следует отметить, что применение гетероструктур в светодиодах выгодно и по другим причинам. Благодаря эффектам «электронного» ограничения и суперинжекции можно резко повысить концентрацию неосновных носителей в активной области и достигнуть высокого внутреннего квантового выхода при малых прямых токах. В таких случаях рекомбинация носителей происходит в ограниченной по размерам области, в которой концентрация неравновесных носителей повышается в раз по сравнению с гомопереходом при этом же уровне возбеждения (L – диффузионная длина неосновных носителей, d – толщина базы).

Естественно, большое значение ηвн не гарантирует высокой эффективности светодиода как оптоэлектронного прибора, поэтому при его эксплуатации более важным является такой параметр, как внешний квантовый выход ηвнш (или КПД преобразования электрической энергии в световую), определяемый отношением числа фотонов, выведенных за пределы кристалла, к числу носителей заряда, проходящих через p-n-переход.

Как правило, величина ηвн не превышает нескольких процентов, так как за пределы кристалла можно вынести лишь небольшую часть генерируемого внутри активной области излучения. Наиболее существенны следующие виды потерь: 1) на полное внутреннее отражение излучения, падающего на границу раздела полупроводник – окружающая среда под углом, большим критического; 2) на френелевское отражение для излучения, падающего на границу раздела под углом, меньшим критического; 3) на поглощение излучения в объеме полупроводника и в приконтактных областях.


Случайные файлы

Файл
32938.rtf
14442.rtf
11183-1.rtf
26878.rtf
66777.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.