Аналого-цифровое преобразование сигналов (62229)

Посмотреть архив целиком

Министерство образования и науки Российской Федераций

Казанский Государственный энергетический Университет










Отчет по производственной практике










Выполнил: студент группы

ИИТ 2-05 Каримуллин И.И.

Проверил: Зарипова Р.С.





Казань 2008



Содержание


Аналого-цифровое преобразование сигналов

Организация документооборота предприятий

Основные требования противопожарного режима предприятия. Первичные средства и устройства пожаротушения

Биологические ресурсы. Естественные ресурсы

Список использованной литературы



Аналого-цифровое преобразование сигналов


Форма представления информации называется сообщение, с понятием информационного сообщения тесно связано понятие сигнала. Сигнал - любая физическая величина, изменяющаяся во времени и содержащая информацию об определенном объекте. Т.о. сигнал представляет собой непрерывную функцию от времени. Для преобразования любого аналогового сигнала (звука, изображения) в цифровую форму необходимо выполнить три основные операции: дискретизацию, квантование и кодирование.

Дискретизация - представление непрерывного аналогового сигнала последовательностью его значений. Эти отсчеты берутся в моменты времени, отделенные друг от друга интервалом, который называется интервалом дискретизации. Величину, обратную интервалу между отсчетами, называют частотой дискретизации. Понятно, что чем меньше интервал дискретизации и, соответственно, выше частота дискретизации, тем меньше различия между исходным сигналом и его дискретизированной копией. Ступенчатая структура дискретизированного сигнала может быть сглажена с помощью фильтра нижних частот. Таким образом и осуществляется восстановление аналогового сигнала из дискретизированного. Но восстановление будет точным только в том случае, если частота дискретизации по крайней мере в 2 раза превышает ширину полосы частот исходного аналогового сигнала (это условие определяется известной теоремой Котельникова). Если это условие не выполняется, то дискретизация сопровождается необратимыми искажениями.

Дело в том, что в результате дискретизации в частотном спектре сигнала появляются дополнительные компоненты, располагающиеся вокруг гармоник частоты дискретизации в диапазоне, равном удвоенной ширине спектра исходного аналогового сигнала. Если максимальная частота в частотном спектре аналогового сигнала превышает половину частоты дискретизации, то дополнительные компоненты попадают в полосу частот исходного аналогового сигнала. В этом случае уже нельзя восстановить исходный сигнал без искажений.

Если объект телевизионной съемки представляет собой очень быстро движущийся или, например, вращающийся предмет, то могут возникать и искажения дискретизации во временной области. Примером искажений, связанных с недостаточно высокой частотой временной дискретизации (это частота кадров телевизионного разложения), является картина быстро движущегося автомобиля с неподвижными или, например, медленно вращающимися спицами колеса (стробоскопический эффект). Если частота дискретизации установлена, то искажения дискретизации отсутствуют, когда полоса частот исходного сигнала ограничена сверху и не превышает половины частоты дискретизации.

Если потребовать, чтобы в процессе дискретизации не возникало искажений ТВ сигнала с граничной частотой, например, 6 МГц, то частота дискретизации должна быть не меньше 12 МГц. Однако, чем ближе частота дискретизации к удвоенной граничной частоте сигнала, тем труднее создать фильтр нижних частот, который используется при восстановлении, а также при предварительной фильтрации исходного аналогового сигнала. Это объясняется тем, что при приближении частоты дискретизации к удвоенной граничной частоте дискретизируемого сигнала предъявляются все более жесткие требования к форме частотных характеристик восстанавливающих фильтров - она все точнее должна соответствовать прямоугольной характеристике. Следует подчеркнуть, что фильтр с прямоугольной характеристикой не может быть реализован физически. Такой фильтр, как показывает теория, должен вносить бесконечно большую задержку в пропускаемый сигнал. Поэтому на практике всегда существует некоторый интервал между удвоенной граничной частотой исходного сигнала и частотой дискретизации.

Квантование - представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин - уровней квантования. Другими словами, квантование - это округление величины отсчета. Уровни квантования делят весь диапазон возможного изменения значений сигнала на конечное число интервалов - шагов квантования. Расположение уровней квантования обусловлено шкалой квантования. Используются как равномерные, так и неравномерные шкалы. Искажения сигнала, возникающие в процессе квантования, называют шумом квантования. При инструментальной оценке шума вычисляют разность между исходным сигналом и его квантованной копией, а в качестве объективных показателей шума принимают, например, среднеквадратичное значение этой разности. В отличие от флуктуационных шумов шум квантования коррелирован с сигналом, поэтому шум квантования не может быть устранен последующей фильтрацией. Шум квантования убывает с увеличением числа уровней квантования.

На рис. 1 показаны изображение, квантованное на 4 уровня, и соответствующий такому числу уровней шум квантования, в котором нетрудно разглядеть сюжет исходного изображения. Изображение, показанное на рис. 2, получено с использованием 128 уровней. При таком уже сравнительно большом числе уровней шум квантования похож на обычный флуктуационный шум. Размах шума упал, поэтому пришлось при получении картинки шума квантования увеличить этот размах в 128 раз, чтобы шум был заметен. Еще несколько лет назад вполне достаточным казалось использовать 256 уровней для квантования телевизионного видеосигнала. Сейчас считается нормой квантовать видеосигнал на 1024 уровня. Число уровней квантования при формировании цифрового звукового сигнала намного больше: от десятков тысяч до миллионов.

Цифровое кодирование - квантованный сигнал, в отличие от исходного аналогового, может принимать только конечное число значений. Это позволяет представить его в пределах каждого интервала дискретизации числом, равным порядковому номеру уровня квантования. В свою очередь это число можно выразить комбинацией некоторых знаков или символов. Совокупность знаков (символов) и система правил, при помощи которых данные представляются в виде набора символов, называют кодом. Конечная последовательность кодовых символов называется кодовым словом. Квантованный сигнал можно преобразовать в последовательность кодовых слов. Эта операция и называется кодированием. Каждое кодовое слово передается в пределах одного интервала дискретизации. Для кодирования сигналов звука и изображения широко применяют двоичный код. Если квантованный сигнал может принимать N значений, то число двоичных символов в каждом кодовом слове nlog2N. Один разряд, или символ слова, представленного в двоичном коде, называется битом. Обычно число уровней квантования равно целой степени числа 2, т.е. N = 2n. Кодовые слова можно передавать в параллельной или последовательной формах. Для передачи в параллельной форме надо использовать n линий связи (в примере, показанном на рисунке, n = 4). Символы кодового слова одновременно передаются по линиям в пределах интервала дискретизации. Для передачи в последовательной форме интервал дискретизации надо разделить на n подинтервалов - тактов. В этом случае символы слова передаются последовательно по одной линии, причем на передачу одного символа слова отводится один такт. Каждый символ слова передается с помощью одного или нескольких дискретных сигналов - импульсов. Преобразование аналогового сигнала в последовательность кодовых слов, поэтому часто называют импульсно-кодовой модуляцией. Форма представления слов определенными сигналами определяется форматом кода. Можно, например, устанавливать в пределах такта высокий уровень сигнала, если в данном такте передается двоичный символ 1, и низкий - если передается двоичный символ 0 (такой способ представления, называют форматом БВН - Без Возвращения к Нулю).

Операции, связанные с преобразованием аналогового сигнала в цифровую форму (дискретизация, квантование и кодирование), выполняются одним устройством - аналого-цифровым преобразователем (АЦП). Сейчас АЦП может быть просто интегральной микросхемой. Обратная процедура, т.е. восстановление аналогового сигнала из последовательности кодовых слов, производится в цифро-аналоговом преобразователе (ЦАП). Сейчас существуют технические возможности для реализации всех обработок сигналов звука и изображения, включая запись и излучение в эфир, в цифровой форме. Однако в качестве датчиков сигнала (например, микрофон, передающая ТВ трубка или прибор с зарядовой связью) и устройств воспроизведения звука и изображения (например, громкоговоритель, кинескоп) пока используются аналоговые устройства. Поэтому аналого - цифровые и цифро - аналоговые преобразователи являются неотъемлемой частью цифровых систем.

Сегодня обработка аналоговых сигналов с использованием цифровых преобразований все шире используется для решения множества прикладных задач в связи, радиолокации, измерительной технике, медицине и других областях науки и техники, в которых прежде доминировали аналоговые системы. Преимущества цифровых систем обусловлены рядом факторов. Прежде всего, это фактор качества получаемого или передаваемого сигнала. Аналоговые реализации зачастую не позволяют обеспечить высоких показателей качества передачи и воспроизведения сигнала, а переход на мировые стандарты ужесточает требования, предъявляемые к таким параметрам систем, как помехоустойчивость, точность, быстродействие.


Случайные файлы

Файл
20698-1.rtf
RLS.doc
180420.rtf
5518.rtf
186828.rtf




Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.