423. Стержень длиной R=20 см заряжен равномерно распределенным зарядом с линейной плотностью τ = 0,2 мкКл/м. Стержень вращается с частотой ν= 10 с-1 относительно оси, перпендикулярной стержню и прохо­дящей через его конец. Определить магнитный момент Рm, обусловленный вращением стержня.


R=20 см

τ=0.2мкКл/м

ν=10 с-1

Выделим на расстоянии r от стержня малый элемент толщиной dr. Так как линейная плотность равна τ, то заряд этого элемента равен dQ=dr×τ.

Так как стержень вращается с частотой ν, то период обращения равен . За это время стержень сделает оборот и тогда ток создаваемый зарядом dQ равен .

Магнитный момент Pm по определению это произведение силы кругового тока I на обтекаемую им площадь S: Pm=I×S (в системе СИ).

Тогда от тока dI момент равен . Площадь круга радиусом r равна S(r)=π×r2, поэтому .

Полный момент равен интегралу по всему стержню:

.

Подставляем числа.

.

Pm=?








Чтобы не видеть здесь видео-рекламу достаточно стать зарегистрированным пользователем.
Чтобы не видеть никакую рекламу на сайте, нужно стать VIP-пользователем.
Это можно сделать совершенно бесплатно. Читайте подробности тут.